首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在Mg-9Li双相合金中添加0.5%(质量分数,下同)Ca元素,通过磁悬浮熔炼及铜模吸铸方法熔炼制备了共晶型Mg-9Li-0.5Ca合金。组织观察表明,常规Mg-9Li双相合金中形成的α-Mg相为粗大短板条状,取向随机、均匀无序分布于β-Li基体中。而Mg-9Li-0.5Ca合金中形成了棒状交替排列的(α-Mg+β-Li)共晶团组织,在共晶团内,α-Mg相呈长纤维状(长宽比约为100)、并以一定取向定向排列;相比于Mg-9Li合金,共晶a-Mg相纤维间距及纤维直径显著减小、组织明显细化,a-Mg相体积分数显著增加;同时,大量纳米、亚微米级Mg_2Ca颗粒均匀弥散分布于α-Mg、β-Li晶粒内及两相界面上。由此导致具有该共晶组织的Mg-9Li-0.5Ca合金相比于Mg-9Li合金力学性能显著增加,室温拉伸屈服强度提高3%、抗拉强度提高3.5%,伸长率提高50%。分析表明,微量Ca元素的添加和铜模吸铸产生的较快的冷却速度,诱发Mg-9Li双相中细小(α-Mg+β-Li)共晶组织的形成,显著提高力学性能。  相似文献   

2.
采用Mg-10Al-27Ca中间合金的方式在Mg-9Li合金中添加微量Ca及Al元素,利用磁悬浮熔炼和铜模吸铸的方法熔炼制备了Mg-9Li-0.5Ca-0.18Al合金,考察微量Ca添加对Mg-9Li双相合金组织与力学性能影响。结果表明,相比于常规用Mg-30Ca、纯Al的Ca、Al添加方式,以Mg-10Al-27Ca中间合金方式添加Ca、Al元素对Mg-9Li双相合金中α-Mg相的组织细化和均匀化效果更为显著,形成的Al2Ca颗粒分布也更为均匀弥散。经Mg-10Al-27Ca中间合金方式添加0.5 wt%Ca后,合金的屈服强度、抗拉强度较Mg-9Li合金分别提高75.8%、52.5%,伸长率仅下降7.6%,合金的断裂韧性得到提高。Mg-10Al-27Ca中间合金中形成的细小、分布均匀的Al2Ca颗粒对α-Mg相优良的异质形核作用是Mg-9Li-0.5Ca(Mg-10Al-27Ca)-0.18Al合金组织细化、力学性能提高的根本原因。  相似文献   

3.
为了提高镁锂合金的强度,采用普通重力铸造法制备了Mg-9Li-3.57Al-0.5Si-0.25Ca合金,考察该合金经均匀化热处理及轧制变形后的微观组织演变及力学行为变化。结果表明,铸态Mg-9Li-3.57Al-0.5Si-0.25Ca合金主要由β-Li基体、α-Mg相、以及分布于α-Mg/β-Li相界、基体的AlLi大颗粒,少量的Mg Li2Al、Mg_2Si和(Mg,Al)_2Ca相组成。合金经不同时间均匀化处理后,β-Li基体及界面处的AlLi大颗粒溶解,而在α-Mg相内析出纳米AlLi颗粒、并逐步长大;同时长条状α-Mg相从β-Li基体中析出并逐步合并长大。再经热轧后,α-Mg相拉长细化;α-Mg相内、相界面处大量AlLi相回溶,消除了界面处大颗粒聚集分布状态;同时在α-Mg相、β-Li基体内形成高密度均匀弥散分布的纳米颗粒强化相,合金得到了有效强化。热轧合金的力学性能大幅度提高,其抗拉强度、屈服强度、伸长率分别达到216 MPa、164 MPa和9.51%。  相似文献   

4.
在Mg-9Li双相合金中添加0.5wt.% Ca元素,通过磁悬浮熔炼及铜模吸铸方法熔炼制备了共晶型Mg-9Li-0.5Ca合金。组织观察表明,常规Mg-9Li双相合金中形成的?-Mg相为粗大短板条状,取向随机、均匀无序分布于?-Li 基体中。而Mg-9Li-0.5Ca合金中形成了棒状交替排列的(?-Mg ?-Li)共晶团组织,在共晶团内?-Mg相呈长纤维状(长径比~100)、并以一定取向定向排列;相比于Mg-9Li合金,共晶?-Mg相纤维间距及纤维直径显著减小、组织明显细化,?-Mg相体积分数显著增加;同时,大量纳米、亚微米级Mg2Ca颗粒均匀弥散分布于?-Mg、?-Li晶粒内及两相界面上。由此导致具有该共晶组织的Mg-9Li-0.5Ca合金相比于Mg-9Li合金室温拉伸屈服强度提高3%、抗拉强度提高3.5%,伸长率提高50%,力学性能显著增加。分析表明,微量Ca元素的添加和铜模吸铸产生的较快的冷却速度,诱发Mg-9Li双相中细小(?-Mg ?-Li)共晶组织的形成,显著提高力学性能。  相似文献   

5.
陈君  张清 《金属热处理》2019,44(4):27-32
利用感应熔炼制备了不同Ca含量的Mg-6Al-1Y-1Nd-xCa(x=0、0.1、0.4、0.7)镁合金,采用光学金相显微镜、扫描电镜、X射线衍射分析、能谱分析和拉伸及蠕变力学性能等手段研究了微量Ca元素添加对Mg-6Al-1Y-1Nd镁合金显微组织和力学性能的影响。研究结果证实,添加微量的碱土元素Ca使得Mg-6Al-1Y-1Nd镁合金的显微组织明显得到细化,Mg-6Al-1Y-1Nd合金主要存在Al_2Y和Al_2Nd块状稀土析出相,Ca元素的添加使得该合金形成了呈条状和骨骼状的新析出相Al_2Ca。力学性能测试结果证实微量Ca元素添加能够显著提高Mg-6Al-1Y-1Nd镁合金在室温和高温条件下的强度和塑性,同时显著提升了该合金在150~200℃/70 MPa测试条件下的抗蠕变性能,表明Ca是Mg-6Al-1Y-1Nd镁合金重要强化添加元素。  相似文献   

6.
基于α-Mg、α-Mg+β-Li和β-Li三种相结构,制备Mg-4Li-3(Al-Si)、Mg-8Li-3(Al-Si)和Mg-12Li-3(Al-Si)三种合金,用于研究Al-Si共晶体对其组织和力学性能的影响。在Mg-xLi (x=4%,8%和12%,质量分数)合金中添加Al-Si共晶体分别形成以下的Al-Li析出相:Al_3Li、AlLi和Li_3Al_2。此外,在这三种合金中还发现大量的Mg_2Si相颗粒。拉伸试验结果表明,Mg-4Li-3(Al-Si)合金的极限抗拉强度最高,为249 MPa,其伸长率最低,为6.3%。Mg-12Li-3(Al-Si)合金的伸长率最高,为26%,但极限抗拉强度最低,为173 MPa。这三种合金力学性能的差异归因于晶体结构的不同以及析出物类型、形态和分布的不同。  相似文献   

7.
铸态及挤压态Mg-11Li-3Al-xZr合金的组织及性能   总被引:1,自引:0,他引:1  
通过真空感应熔炼及挤压变形制备了铸态及挤压态的Mg-11Li-3Al-xZr(x=0、0.1)合金,采用OM、XRD、SEM、EDS观察并分析了合金的显微组织,测试了不同状态合金的力学性能。结果表明,Mg-11Li-3Al-xZr合金均含有β-Li、α-Mg、θ-MgLi_2Al、AlLi相,Mg-11Li-3Al-0.1Zr合金中还存在Al_3Zr相。铸态合金晶粒粗大,挤压变形过程中发生动态再结晶使晶粒细化。Zr的添加能明显细化晶粒,尤其在挤压后Mg-11Li-3Al-0.1Zr合金晶粒尺寸仅为Mg-11Li-3Al合金的1/4左右。铸态时两种合金力学性能相近,Mg-11Li-3Al-0.1Zr合金伸长率略低;挤压变形后两种合金伸长率较高,而且由于加工硬化和细晶强化作用,强度明显提高,Mg-11Li-3Al-0.1Zr合金的强度达到194 MPa,较铸态提高32.8%。  相似文献   

8.
采用普通重力铸造法制备了Mg-9Li-x Ca-0.5(Al-12.6Si)(x=0,0.25,0.5,1.0wt%)合金,研究了不同Ca含量对铸态Mg-9Li-0.5(Al-12.6Si)合金微观组织演变和力学性能的影响,分析了组织转变与力学行为之间的关系。结果表明,随着Ca含量的增加,Mg-9Li-0.5(Al-12.6Si)合金中的α-Mg相被细化,呈长条状,最后又长大;合金中存在一定数量的长径比高达5.06的长条状α-Mg相及颗粒相均匀弥散分布于β-Li基体和晶界上,其成分主要为Mg_2Ca、Mg_2Si。当含0.5wt%Ca时,合金的抗拉强度为134 MPa,伸长率为30.6%。  相似文献   

9.
研究固溶态和挤压态Mg-xLi-3Al-2Zn-0.5Y(x=4,8,12,质量分数,%)合金的显微组织和腐蚀行为。结果表明,当锂含量从4%增加到12%,合金基体由α-Mg单相转变为α-Mg+β-Li双相,再转变为β-Li单相。Mg-4Li-3Al-2Zn-0.5Y和Mg-12Li-3Al-2Zn-0.5Y合金具有晶间腐蚀和点蚀的混合腐蚀特征,前者与沿晶界析出的AlLi相有关,后者与第二相与基体之间的高电位差有关。挤压态合金的耐蚀性优于固溶态合金。挤压态Mg-8Li-3Al-2Zn-0.5Y合金具有最低腐蚀速率(PW=(0.63±0.26)mm/a),主要归因于该合金的第二相分布更均匀、通过牺牲β-Li相形成的保护性α-Mg相和相对完整的更均匀分布的氧化膜。  相似文献   

10.
《铸造》2018,(9)
以Mg-3Al-0.3Mn合金为基础,通过OM、XRD、SEM、EPMA及拉伸等检测方法,研究了Ca含量(1.7%~7.5%)对合金凝固组织、相组成、元素分布及挤压态力学性能的影响。结果表明,随着Ca含量的增加,Mg-3Al-x Ca-0.3Mn合金的凝固组织逐渐枝晶化,β-Mg_(17)Al_(12)相消失并出现Al_2Ca相及Mg_2Ca相。合金的高温(150℃和200℃)抗拉强度与屈服强度随Ca含量增加而逐渐提高,而伸长率逐渐下降。综合分析可知Mg-3Al-2.7Ca-0.3Mn合金具有较好的高温力学性能。  相似文献   

11.
为提高Mg-9Li-3Al双相镁合金的力学性能,向其中添加Sn和Y元素。通过金相显微镜观察、扫描电镜分析、X射线测试及拉伸试验分析研究Sn和Y元素对Mg-9Li-3Al合金显微组织演变和力学性能的影响。研究结果表明,Sn元素添加改变了块状初生α-Mg的形貌,使其呈板条状;Y元素添加使合金中α-Mg相呈现块状和板条状两种形态。铸态Mg-9Li-3Al-1Sn-1Y合金的屈服强度约为118 MPa,抗拉强度为148 MPa,断裂伸长率约为21%。在MLi_2Sn和Al_2Y金属间化合物的共同作用下,添加Sn和Y元素的Mg-9Li-3Al合金的强度和伸长率获得提升。  相似文献   

12.
以Mg-11Li-3Al-0.4Ca合金为研究对象,采用金相显微镜、X射线衍射仪、扫描电子显微镜、拉伸机、电化学工作站等检验手段,研究了冷轧变形及后续退火热处理对该合金组织、性能和腐蚀行为的影响.结果表明:Mg-11Li-3Al-0.4Ca合金主要由β-Li、MgLi2Al、AlLi、(MgAl)2Ca相组成;当以40...  相似文献   

13.
采用X射线衍射、光学显微镜、扫描电镜和拉伸测试研究Sn含量对铸态和挤压态Mg-8Li-3Al-(1,2,3)Sn(质量分数,%)合金显微组织和拉伸性能的影响。研究发现,铸态Mg-8Li-3Al-(1,2,3)Sn合金由α-Mg+β-Li双相基体、MgLiAl_2相和Li_2MgSn相组成。Sn含量的增加引起α-Mg枝晶细化和Li_2MgSn相含量增加。热挤压过程中,β-Li相发生完全动态再结晶,而α-Mg相发生不完全动态再结晶。随Sn含量增加,α-Mg相再结晶体积分数增加而再结晶晶粒平均尺寸减小。Sn含量的增加能够提高铸态Mg-8Li-3Al-(1,2,3)Sn合金的强度,但对塑性不利。热挤压使Mg-8Li-3Al-(1,2,3)Sn合金的拉伸性能明显提高,Mg-8Li-3Al-2Sn合金表现出最高的拉伸性能。  相似文献   

14.
对La/Ce混合稀土的Mg-9Li-3Al-xRE(x=0,0.5,1,1.5,2,质量分数,%)合金,利用光学显微镜,带能谱(EDS)的扫描电子显微镜(SEM)和X射线衍射(XRD)研究了微观组织对其力学性能的影响。结果表明,在加入混合稀土的铸态合金中,形成了Al_4RE相,并且Mg_(17)Al_(12)相的含量和α-Mg相的体积分数均被减少。此外,细化了α-Mg相并提高了合金的力学性能。但是,随着La/Ce混合稀土含量的增加,Al_4RE相的尺寸增大,降低了合金的力学性能。在加入混合稀土的挤压态合金中,合金中Al_4RE相挤压破碎至1~3μm,分布于β-Li基体中和α/β相之间。Mg-9Li-3Al-1.5RE合金获得最好的力学性能,最大抗拉强度和延伸率分别为228.3 MPa和20.8%,同铸态Mg-9Li-3Al相比分别提高了88.6%和197.4%。  相似文献   

15.
研究了铝和锂元素含量不同的Mg-12Gd-1Zn-0.5Zr-0.5Ag(质量分数,%)合金经T6热处理后的组织演变和力学性能。结果表明,T6热处理后,有新的Mg3Gd颗粒从Mg-12Gd-1Zn-0.5Zr-0.5Ag合金中析出,且Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的大多数Al2Li3相变得更细小,分布更均匀。时效态Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的晶粒尺寸和c/a比值相比时效态Mg-12Gd-1Zn-0.5Zr-0.5Ag合金有显著的减小,这有利于提高抗拉强度和塑性。时效态Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金具有最佳的抗拉强度、弹性模量和塑性匹配,其抗拉强度为210 MPa,弹性模量为50.7 GPa,延性率为24.8%。  相似文献   

16.
研究了铝和锂元素含量不同的Mg-12Gd-1Zn-0.5Zr-0.5Ag (质量分数,%)合金经T6热处理后的组织演变和力学性能。结果表明,T6热处理后,有新的Mg3Gd颗粒从Mg-12Gd-1Zn-0.5Zr-0.5Ag合金中析出,且Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的大多数Al2Li3相变得更细小,分布更均匀。时效态Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的晶粒尺寸和c/a比值相比时效态Mg-12Gd-1Zn-0.5Zr-0.5Ag合金有显著的减小,这有利于提高抗拉强度和塑性。时效态Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金具有最佳的抗拉强度、弹性模量和塑性匹配,其抗拉强度为210 MPa,弹性模量为50.7 GPa,延性率为24.8%。  相似文献   

17.
采用光学和扫描电子显微镜研究了3种添加剂Mg-10Mn、Al-20Mn和MnCl_2对Mg-3Al%合金组织的影响,利用相提取技术分析不同锰添加剂下Mg-3%Al(质量分数)合金中生成的Al-Mn相,并通过边边匹配模型对Al-Mn相和α-Mg间的晶体学错配度进行计算。结果表明:不同锰添加剂对Mg-3%Al合金晶粒和Al-Mn相类型有显著影响。Mg-10Mn和Al-20Mn中间合金在Mn加入量为0.3%时,对Mg-3%Al合金晶粒有一定的细化作用,而MnCl_2导致晶粒显著粗化。Mn加入量为0.3%时,添加Mg-10Mn和Al-20Mn中间合金形成的Al-Mn相主要为Al_8Mn_5;而Mn量增至0.5%时,添加Mg-10Mn和Al-20Mn中间合金形成的Al-Mn相则主要为Al_(0.89)Mn_(1.11)。添加MnCl_2时,Mg-3Al%合金中形成的Al-Mn相主要为Al_(10)Mn_3。晶体学错配度计算表明:Al_8Mn_5能充当Mg-3%Al合金的异质形核核心,但形核效率一般,Al_(0.89)Mn_(1.11)和Al_(10)Mn_3不能充当异质形核核心。  相似文献   

18.
对挤压态Mg-11Li-3Al-xZr(x=0,0.1)合金进行了不同温度的固溶处理,采用金相观察、X射线衍射、扫描电镜观察以及硬度、拉伸测试等手段,研究了固溶处理后合金的显微组织及力学性能。结果表明,挤压态Mg-11Li-3Al合金由β-Li、α-Mg、θ-MgLi2Al、AlLi相组成,450℃固溶处理后θ-MgLi_2Al、AlLi、α-Mg相溶解到β-Li基体中,晶粒尺寸粗化;添加0.1%的Zr后,Mg-11Li-3Al-0.1Zr合金中没有形成新相,450℃固溶处理后同样得到完全的β-Li单相合金,晶粒尺寸未发生明显改变,合金的热稳定性提高。随着固溶温度升高,Mg-11Li-3Al-xZr(x=0,0.1)合金挤压板硬度不断提高,在400~450℃之间达到最大;屈服强度及抗拉强度随固溶温度升高而变大,但伸长率降低。  相似文献   

19.
采用传统铸造方法分别制备了Φ10 mm和Φ90 mm Mg-9Li-3Al-2.5Sr(LAJ932)合金锭。在挤压温度260℃,挤压比28条件下对Φ90 mm合金锭进行挤压。分别分析和报道了铸态和挤压态LAJ932镁合金的微观组织和力学性能。探讨了该合金在挤压过程中的组织演变规律。研究结果表明:铸态和挤压态LAJ932镁合金均包括α-Mg(hcp)相,β-Li(bcc)相和Al4Sr相。Φ10 mm铸锭的组织比Φ90 mm铸锭组织细小得多。挤压过程中α-Mg相发生连续动态再结晶,而β-Li相发生非连续动态再结晶。挤压过程中,在hcpα-Mg相中形成{10 1 0}<10 1 0>织构,而bccβ-Li相中则形成{110}<101>织构。挤压过程中,LAJ932镁合金的强度和塑性均得到改善。挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到235 MPa,屈服强度为221 MPa,延伸率为19.4%,合金展现出良好的力学性能。  相似文献   

20.
采用传统铸造方法分别制备了Φ10 mm和Φ90 mm Mg-9Li-3Al-2.5Sr(LAJ932)合金锭。在挤压温度260℃,挤压比28条件下对Φ90 mm合金锭进行挤压。分别分析和报道了铸态和挤压态LAJ932镁合金的微观组织和力学性能。探讨了该合金在挤压过程中的组织演变规律。研究结果表明:铸态和挤压态LAJ932镁合金均包括α-Mg(hcp)相,β-Li(bcc)相和Al4Sr相。Φ10 mm铸锭的组织比Φ90 mm铸锭组织细小得多。挤压过程中α-Mg相发生连续动态再结晶,而β-Li相发生非连续动态再结晶。挤压过程中,在hcpα-Mg相中形成{10 1 0}10 1 0织构,而bccβ-Li相中则形成{110}101织构。挤压过程中,LAJ932镁合金的强度和塑性均得到改善。挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到235 MPa,屈服强度为221 MPa,延伸率为19.4%,合金展现出良好的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号