共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
为解决医学上糖尿病性视网膜病变图像人工识别困难、精度差等问题,提出一种基于多特征融合的卷积神经网络识别方法。在VGG-16模型的基础上,通过融合每层网络上的局部特征,增强模型的特征提取能力。选用Softmax分类器,使病变图像识别更加准确。使用OpenCV图像处理工具采用加噪、上下左右不同角度翻转、调节对比度等5种方式扩充训练集。实验结果表明,基于多特征融合的深度学习框架图像识别系统在数据集上的平均识别精度达到94.23%,相较于Alex-Net、Google-Net、Compact-Net、ResNet-101等模型分别提高了10.56%、7.80%、6.01%、0.02%,验证了该方法的有效性。该模型具有很好的鲁棒性。 相似文献
3.
4.
5.
农业病虫害是影响农作物产量和质量的主要因素。如何快速准确地发现和识别农作物病虫害,一直是农业生产的难题。传统的病虫害检测方法主要依靠人工目测,存在着准确率低、效率低等问题。随着计算机视觉和深度学习技术的不断发展,基于图像分析的农作物病虫害识别技术逐渐成为研究的热点。对此,研究基于深度学习的农作物病虫害图像识别方法,以期提高病虫害图像分类的准确率和效率。 相似文献
6.
图像分类是根据图像的信息将不同类别的图像区分开来,是计算机视觉中重要的基本问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像、声音和文本。该系统基于Caffe深度学习框架,首先对数据集进行训练分析构建深度学习网络,提取数据集图像特征信息,得到数据对应的分类模型,然后以bvlc-imagenet训练集模型为基础,对目标图像进行扩展应用,实现"以图搜图"Web应用。 相似文献
7.
肠道肿瘤诊断目前主要依靠医务人员对于医学图像的经验判断,随着患者不断增加,对于医院和医生的诊断压力也逐渐加大.采用一种自动判断肠道肿瘤的方式对于解决目前肠道肿瘤诊断困难非常必要.文章研究利用深度学习方法针对肠道肿瘤图像进行特征提取和识别,实验采集了1600个医学图像数据,按照7:3比例分配训练集和测试集,采用ResNet50模型,经过训练的网络准确率达到97.95%,在一定程度上为肠癌的诊断提供了辅助诊断信息,具有一定的实用价值. 相似文献
8.
9.
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性.随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究.首先,从细粒度... 相似文献
10.
深度学习作为图像识别领域重要的技术手段,有着广阔的应用前景,开展图像识别技术研究对推动计算机视觉及人工智能的发展具有重要的理论价值和现实意义,文中对深度学习在图像识别中的应用给予综述。介绍了深度学习的由来,具体分析了深度信念网络、卷积神经网络、循环神经网络、生成式对抗网络以及胶囊网络等深度学习模型,对各个深度学习模型的改进型模型逐一对比分析。总结近年来深度学习在人脸识别、医学图像识别、遥感图像分类等图像识别应用领域取得的研究成果并探讨了已有研究值得商榷之处,对深度学习在图像识别领域中的发展趋势进行探讨,指出有效使用迁移学习技术识别小样本数据,使用非监督与半监督学习对图像进行识别,如何对视频图像进行有效识别以及强化模型的理论性等是该领域研究的进一步方向。 相似文献
11.
12.
图像处理软件的飞速发展,带动了移动应用领域一大批修图、美化应用的兴起。但是修图、美化软件的快速发展和普及也带来了一些社会问题和安全问题,如网恋对象严重失真,摄影作品造假等。针对手机中的修图处理APP软件,提出一种基于多数据集特征学习的神经网络模型,并给出其网络拓扑结构。区别于传统的多个神经网络并行操作,提出的网络模型具有共享模型参数的特征,能同时对多个特征数据集进行深度学习,使检测程序具备多特征识别能力。此外,还提出了一种针对多任务网络模型的损失函数,以增强深度特征学习的能力。实验结果表明,提出方法的准确率较传统方法有较大提升,同时泛化性能优越,能识别出经过多种美图、修图软件修复过的图像。 相似文献
13.
针对人脸表情识别鲁棒性差,容易受身份信息干扰的问题,提出一种具有局部并行结构的深度神经网络识别算法。首先使用稀疏自编码算法训练得到不同尺度的卷积核,然后提取卷积核特征并作池化处理,使特征具有一定的平移不变性,最后采用与表情相关的7个并行的4层网络得到最终的分类结果。实验结果表明,在标准的人脸表情识别库上进行独立测试时,本文提出的局部并行深度神经网络的表情识别方法对测试集的人不出现在训练集中的情况有较好表现,相比其他算法更具有实用性。 相似文献
14.
考古出土的青铜器铭文是非常宝贵的文字材料,准确、快速地了解其释义和字形演变源流对考古学、历史学和语言学研究均有重要意义.青铜器铭文的辨识需要综合文字的形、音、义进行研究,其中第一步也是最重要的一步就是分析文字的形体特征.本文提出一种基于两阶段特征映射的神经网络模型来提取每个文字的形体特征,最后对比目前已知的文字研究成果,如《古文字类编》、《说文解字》,得出识别的结果.通过定性和定量的实验分析,我们发现本文提出的方法可达到较高的识别精度.特别地,在前10个预测类别中(Top-10)准确率达到了94.2%,大幅缩小了考古研究者的搜索推测空间,提高了青铜铭文识别的效率和准确性. 相似文献
15.
随着深度学习的不断发展,唇语识别领域的研究取得了重大进展,涌现了许多唇语识别的深度学习算法。依据识别对象的连续性,将唇语识别分为孤立唇语识别和连续唇语识别,并对各识别任务的深度学习方法进行了详细和深入的分析总结。从孤立唇语识别的深度学习方法和连续唇语识别的深度方法两个方面介绍了主流唇语识别方法,并对各方法的优缺点和性能进行比较;对不同数据集下代表性方法的特点和性能进行比较,对两类方法的优缺点和适用范围进行阐述;讨论了唇语识别方法存在的问题和挑战,并对唇语识别方法的研究趋势进行了展望。 相似文献
16.
17.
针对深度卷积神经网络随着卷积层数增加而导致网络模型难以训练和性能退化等问题,提出了一种基于深度残差网络的人脸表情识别方法。该方法利用残差学习单元来改善深度卷积神经网络模型训练寻优的过程,减少模型收敛的时间开销。此外,为了提高网络模型的泛化能力,从KDEF和CK+两种表情数据集上选取表情图像样本组成混合数据集用以训练网络。在混合数据集上采用十折(10-fold)交叉验证方法进行了实验,比较了不同深度的带有残差学习单元的残差网络与不带残差学习单元的常规卷积神经网络的表情识别准确率。当采用74层的深度残差网络时,可以获得90.79%的平均识别准确率。实验结果表明采用残差学习单元构建的深度残差网络可以解决网络深度和模型收敛性之间的矛盾,并能提升表情识别的准确率。 相似文献
18.
针对城市环境卫生提出的对市民生活垃圾进行分类回收的要求,考虑计算机卷积神经网络在图片分类中的强大表现,提出了基于深度学习中卷积神经网络对垃圾图片处理以及输出识别的新模型与方法.针对目前图像局部特征表达存在的复杂性,模糊性等不足,采用特征多层池化以及系统神经网络学习的方式进行优化.同时在ResNet101模型的基础上设计... 相似文献
19.
图像超分辨率重建是用低分辨率图像重建出对应的高分辨率图像的过程。目前,图像超分辨率技术已经成功应用于计算机视觉和图像处理领域。近年来,由于深度学习具有能够从大量数据中自动学习特征的能力,因此被广泛应用于图像超分辨率领域中。介绍了图像超分辨重建的背景,详细总结了用于图像超分辨率的深度学习模型,阐述了图像超分辨率技术在卫星遥感图像、医学影像、视频监控、工业检测任务方面的应用。总结了图像超分辨算法的当前研究现状以及未来发展方向。 相似文献