首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
通过在Gleeble-3500型热模拟实验机上对GH5188合金进行等温热压缩实验,在变形温度为1030~1150℃、应变速率为0.01~10s-1的条件下,研究其热压缩变形的流变应力变化规律。在应力-应变结果的基础上,采用引入应变量因素的Arrhenius方程,建立了描述GH5188合金高温变形特性的本构方程。结果表明:变形温度和应变速率对GH5188合金流变应力影响显著,随变形温度升高和变形速率的降低,相同变形程度下合金的流变应力显著降低,并且在较低的应变下合金即可达到稳态流变状态。GH5188合金流变应力计算值和实验值相对误差较小,所建立的本构方程具有良好的预测能力。  相似文献   

2.
利用Gleeble-1500D热模拟机对B10铜合金进行热压缩实验,研究了该合金在高温塑性变形过程中的流变应力行为.实验温度为800~950℃,应变速率为0.1~15s-1.研究结果表明,B10铜合金的流变应力随着变形温度的增加而减小,随着应变速率的增大而增大.基于BP神经网络建立了该合金的本构关系模型,预测值与实验值对比表明BP神经网络具有很高的预测精度,所建立的本构模型平均相对误差在1%以内.该模型能够客观真实地描述B10铜合金的高温塑性变形行为,为该合金热变形分析提供基础.  相似文献   

3.
采用Gleeble-1500热模拟实验机研究铝钨合金在变形温度为450℃~540℃、应变速率为0.001s-1~1s-1下单道次压缩过程的高温流变行为。基于BP神经网络建立铝钨合金本构关系模型。在该模型中,输入变量为应变、应变速率和变形温度,输出变量为流变应力。与传统方法相比,该本构关系模型的测试数据可以为描述整个变形过程提供一个很好的代表性,也为开发铝钨合金本构关系提供方便和有效的途径。  相似文献   

4.
在Gleeble-3500热模拟仪上进行热压缩实验,研究在变形温度为623~773 K、应变速率为0.01~20 s~(-1)时均匀化状态下Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr合金的热变形行为。实验结果表明:变形过程中流变应力值随应变速率的减小或变形温度的升高而减小。为研究热压缩过程合金的流变行为,同时建立了应变补偿本构模型与人工神经网络模型。计算结果表明:热压缩过程中各个材料常数与应变之间的关系可分别用6次多项式描述;隐含层含有16个神经元的神经网络模型具有好的预测效果。采用应变补偿本构模型和神经网络模型对流变应力进行预测,预测值平均绝对误差分别为3.49%和1.03%,神经网络模型预测精度与效率均高于应变补偿本构模型。  相似文献   

5.
在应变速率0.01~10.0 s~(-1)以及热变形温度300~500℃下,通过Gleeble-1500热模拟试验机对3003铝合金进行高温等温压缩实验。结果表明,该合金具有正的应变速率敏感性。当变形温度低于350℃时,合金的热变形机制以动态回复为主;应变速率大于1.0 s~(-1)时,合金的热变形机制以不连续动态再结晶为主。建立了综合考虑应变速率、变形温度以及应变对流变应力影响的本构方程,本构方程中的材料常数可以表示为应变的4次多项式函数。模拟结果表明:预测曲线与实验曲线吻合较好,流变应力的实测值与预测值的均方根误差以及平均相对误差分别为0.99814和5.72%。所建立的本构方程计算精度较高,可以为合金热变形流变应力的预测提供参考依据。  相似文献   

6.
挤压态7075铝合金高温流变行为及神经网络本构模型   总被引:1,自引:0,他引:1  
采用Gleeble1500D热模拟实验机研究挤压态7075铝合金在变形温度为250~450℃、应变速率为0.01~10s-1下单道次压缩过程的高温流变行为。结果表明:材料在350℃及以下变形时,流变应力曲线呈动态回复型;在温度为350℃以上、应变速率为0.1s-1时,流变曲线局部陡降明显;当应变速率为10s-1时,流变曲线发生波动,呈动态再结晶型;挤压态7075铝合金的流变应力曲线峰值应力及稳态应力均高于铸态合金的,且在变形温度较高时,挤压态材料更易于发生动态软化。基于BP神经网络建立挤压态7075铝合金的本构关系模型,预测值与实验值对比表明:所建立的本构模型整体误差在5.35%以内,拟合度为2.48%,该模型可以用于描述7075铝合金的高温变形流变行为,为该合金热变形过程分析和有限元模拟提供基础。  相似文献   

7.
利用Gleeble 3500热模拟试验机,对Ti2248合金的试样进行压缩试验,获得了不同变形温度、应变速率和真应变下的流动应力数据.根据实验数据和神经网络理论,建立BP神经网络.结果表明,该BP神经网络模型具有很高预测精度,误差均在5%以内,可很好预测Ti2448合金在高温变形过程中不同参数对流变应力的影响.  相似文献   

8.
司家勇  陈龙  廖晓航  李志 《锻压技术》2017,(10):180-188
通过高温热压缩试验,得到经DP工艺处理的GH4169合金在变形温度为900~1060℃、应变速率为0.001~0.5 s~(-1)、压缩量为70%条件下的真应力-真应变曲线,依据流变曲线特征,界定出加工硬化-动态回复和动态流变软化两个阶段,建立了相应的新型高温流变本构模型,同时观察了变形显微组织,进行了定量金相统计分析。结果表明:GH4169合金高温压缩显微组织中的动态再结晶晶粒尺寸随变形温度的升高或应变速率的降低而逐渐增大;δ相含量逐渐减少,在1060℃时基本消失。通过引入标准统计参数——相关系数和平均相对误差绝对值,表明预测值和实际试验数值吻合度较高,所建立的本构方程可以用于准确预测经DP工艺处理的GH4169合金热成形过程中的应力值和热成形工艺优化。  相似文献   

9.
镍基高温合金GH4169高温变形流动应力模型研究   总被引:5,自引:0,他引:5  
镍基高温合金GH4169热模拟压缩实验结果表明:变形温度的升高和应变速率的减小使该合金高温变形时的峰值应力和稳态应力显著降低,变形温度会影响其进入稳态变形时变形程度的大小.基于高温合金GH4169高温变形时的流动应力特征,运用模糊神经网络理论建立了该合金高温变形时的流动应力模型.计算与实验的流动应力的最大误差为10.18%,平均误差为2.11%,该模型的计算精度明显高于由回归法建立的高温合金GH4169高温变形时的流动应力模型.  相似文献   

10.
采用Gleeble-3500热模拟试验机进行等温热压缩实验,分析了GH2907合金在变形温度950℃~1100℃、应变速率0.01s<sub>-1</sub>~10s<sub>-1</sub>、变形量60%条件下的高温流变行为。结果表明:合金的流变应力随着变形温度的升高或应变速率的降低而显著降低。利用Arrhenius双曲正弦方程和Zener-Hollomon参数计算得出合金的热变形激活能Q为463.043kJ.mol<sub>-1</sub>;合金的应力-应变曲线具有明显的动态再结晶(DRX)特征,变形量、变形温度以及应变速率对DRX体积分数均具有显著影响。基于应力-位错关系和DRX动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,可用于描述流变应力与应变速率和变形温度之间的关系。误差分析相关系数R为0.987,预测值与实验值吻合良好,可用于表征预测GH2907合金的热变形行为。  相似文献   

11.
利用Gleeble-3800热模拟实验机,在应变速率0.001~1 s-1以及变形温度750~950 ℃范围内对Ti-555211合金进行等温恒应变速率压缩实验。基于人工神经网络的方法建立了Ti-555211合金热变形本构模型。模型的可靠性用平均相对误差和相关系数来确定。结果表明,所建立的本构模型与实验值的平均相对误差为1.60%,相关系数为0.99938,表明该模型能很好地预测该合金的本构关系。用神经网络来确定本构关系比传统的数学方程更加具有优势。热模拟实验结果表明,随着变形温度的升高和应变速率的减小,该材料的峰值应力有所减小,不连续屈服现象随着变形温度升高和应变速率的增大变得更加明显。流变曲线在不同的变形参数条件下表现形式也不同。  相似文献   

12.
Incoloy 800H高温变形流动应力预测模型   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟实验机研究了 Incoloy 800H合金在变形温度为1273-1473 K和应变速率为0.01-10 s-1条件下的流动应力行为. 采用双曲正弦函数建立了 Incoloy 800H高温条件下的流动应力本构方程, 以六次多项式考虑了应变量耦合因素对本构关系的影响. 研究结果表明, Incoloy 800H在热压缩变形过程中, 低应变速率和高应变速率条件下分别呈动态软化和动态回复特征, 流动应力随应变速率的增加而增加, 随温度的升高而降低; 采用应变的六次多项式拟合得到的本构关系流动应力预测值与实验值吻合较好, 绝大多数(95%)情况下预测的误差小于 6.5%, 平均相对误差仅为3.15%.  相似文献   

13.
应用人工神经网络建立Ti-22Al-25Nb合金高温本构关系模型   总被引:2,自引:0,他引:2  
本构方程是描述材料变形的基本信息和有限元模拟中不可缺少的数学模型,反映了流动应力与应变、应变速率以及温度之间的相互关系。文章运用Gleeble-1500热模拟机对Ti-22Al-25Nb钛合金试样进行等温压缩变形试验,以试验所得数据(变形温度940℃~1030℃,应变速率0.001s-1~1s-1)为基础,采用BP神经网络的方法建立了该合金的高温本构关系,并与传统回归拟合的方法计算出的结果进行了对比。结果表明,BP神经网络本构关系模型的预测精度明显优于传统公式的计算结果,而且模型还可以很好地描述该合金在高温变形时,各热力学参数之间的复杂非线性关系,为该合金本构关系方程模型的建立,提供了一种便捷有效的方法。  相似文献   

14.
在Gleeble-1500热力模拟机上对铸态GH4169合金进行热压缩试验,变形参数为:温度(1193~1373K)、应变速率(0.01~10s~(-1))、变形量50%。通过分析真应力真应变曲线,研究铸态GH4169合金的热变形行为;对比分析了Johnson-Cook(JC)、修正的Johnson-Cook(MJC)和应变补偿Arrhenius3种本构模型的相关系数(R)和平均相对误差(AARE)。结果表明:铸态GH4169合金的流变应力随变形温度的升高和应变速率的降低而减小。JC模型、MJC模型和应变补偿的Arrhenius本构模型的相关系数(R)分别为0.891、0.956和0.961,AARE依次为29.02%、11.16%和9.31%。因此,应变补偿的Arrhenius模型能够更为精确地描述铸态GH4169的热变形行为。  相似文献   

15.
采用Gleeble-1500热模拟机对GH738镍基高温合金进行高温热压缩变形实验,分析该合金在变形温度1000~1160℃、应变速率0.01~10s-1、工程变形量15%~70%条件下流变应力的变化规律。确定GH738合金热变形方程,建立热加工图(Processing map),并通过组织观察对热加工图进行解释。GH738合金热变形激活能Q为499kJ/mol;热加工图随不同变形量而变化,在应变速率较低,温度较高的状态下,能量耗散效率较高。综合应变量为0.2,0.4,0.6和0.8应变量下的热加工图,确立了该合金最佳热加工"安全通道",为GH738高温合金热加工工艺优化提供理论依据。  相似文献   

16.
针对一种新型的铌基高温功能合金Nb10Zr,在变形温度1273~1373 K和应变速率0.01~1 s-1条件下,利用Gleeble-1500型热模拟试验机进行等温恒应变速率压缩试验,对其高温变形行为进行研究,并建立了应变补偿的材料高温变形Arrhenius本构关系模型。确定了峰值应力、变形温度和应变速率之间的关系,并考虑了应变的影响,获得了变形激活能和本构方程中材料常数随应变的变化规律。结果表明,在较低温度下所建立的本构关系模型可以精确预测材料的变形行为,但随着变形温度的升高,本构模型的预测能力有所下降,但在所研究的变形温度和应变速率范围内应变补偿型本构关系模型能够满足工程需要,平均相对误差为4.3%  相似文献   

17.
采用Gleeble-3500热模拟机对GH690-RE合金进行高温压缩变形试验,在温度为950~1200℃,应变速率为0.001~2.000s-1的变形条件下测定并分析其应力-应变曲线。结果表明,流变应力随变形温度的升高和应变速率的降低而降低,且流变应力特征可用经典的双曲正弦模型描述。以应力-应变曲线为基础,采用线性回归法确定了GH690-RE合金的常数,建立了GH690-RE合金的高温本构关系方程。  相似文献   

18.
基于神经网络的TC21合金本构关系模型(英文)   总被引:1,自引:0,他引:1  
本构方程是描述材料变形和有限元模拟基本信息必要的数学模型,它反映流动应力与应变、应变率和温度综合作用的高度非线性关系。基于Gleeble-1500热模拟机上进行等温压缩试验获得的实验数据,系统研究TC21钛合金的流变行为,并采用BP人工神经网络建立该合金的本构关系模型。在该模型中,输入变量为应变、应变速率和变形温度,输出变量为流动应力。与传统方法相比,利用BP人工神经网络所建立的本构关系模型能够更好地表征试验数据及描述整个变形过程。  相似文献   

19.
利用Gleeble-3800热压缩模拟试验机,对GH79合金高温热变形行为及变形机理进行了系统的研究。以高温压缩实验为基础,以高温压缩过程的力学行为特征及微观组织演变规律为主线,获得了该合金在不同应变速率、不同变形温度下的应变速率敏感性指数m值、变形激活能Q值、晶粒指数p值的变化规律。分别构建了不同失稳判据下的动态DMM热加工图及包含位错数量的变形机理图。应用热加工图理论分析了该合金的适合成形加工区和流变失稳区,运用变形机理图预测了该合金高温变形过程基于柏氏矢量补偿的晶粒尺寸、模量补偿的流变应力下的位错演变规律及高温变形机理。  相似文献   

20.
The hot deformation behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy was investigated by isothermal compression test on a Gleeble–3500 machine in the deformation temperature range between 623 and 773 K and the strain rate range between 0.01 and 20 s?1. The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature. Based on the experimental results, Arrhenius constitutive equations and artificial neural network (ANN) model were established to investigate the flow behavior of the alloy. The calculated results show that the influence of strain on material constants can be represented by a 6th-order polynomial function. The ANN model with 16 neurons in hidden layer possesses perfect performance prediction of the flow stress. The predictabilities of the two established models are different. The errors of results calculated by ANN model were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are 3.49% and 1.03%, respectively. In predicting the flow stress of experimental aluminum alloy, the ANN model has a better predictability and greater efficiency than Arrhenius constitutive equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号