共查询到19条相似文献,搜索用时 78 毫秒
1.
在多分辨率场景下基于合成孔径雷达(SAR)图像进行多类典型目标识别,是SAR图像信息解译的重要环节。基于YOLO-v4网络模型,针对目前机载SAR图像及目标信息的特点,提出一种应用于真实机载平台下多场景跨分辨率的实时检测处理架构。文中通过对多类目标进行双重检测,对样本数据量低的训练集进行数据增强,并将图像分割后的同类型目标信息进行合并,解决了多分辨率SAR场景下目标尺度跨度较大的问题。实验结果表明:该方法能够在相关机载SAR数据集上达到六类目标(机场、桥梁、立交桥、汽车、装甲车、飞机)82.8%的mAP值,对后续机载SAR复杂场景下更多类型目标的检测识别具有重要的借鉴意义。 相似文献
2.
近年来,以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习方法在图像识别领域取得了巨大进展,但尚未在SAR目标识别领域得到广泛应用。基于此,将具有代表性的LeNet,AlexNet,VGGNet,GoogLeNet,ResNet,DenseNet,SENet等卷积神经网络模型应用到SAR图像目标识别上,并依据识别精度、模型尺寸、运行时间等指标在公开SAR数据集MSTAR上对9类目标进行识别实验。详细对比分析了不同CNN模型的综合性能,验证了利用CNN网络模型进行SAR图像目标识别的优越性,同时也为该领域的后续工作提供了参考基准。 相似文献
3.
4.
合成孔径雷达(Synthetic Aperture Radar,SAR)在对地面目标进行观测时,可以在多个不同的方位角获取到目标的SAR图像,但这些图像中目标的形态各不相同。考虑到SAR图像对观测方位角极其敏感和SAR图像数据规模小这两个因素,本文设计了一个利用多方位角SAR图像进行目标识别的卷积神经网络(Convolutional Neural Network,CNN),同一目标的3幅SAR图像被当作一幅伪彩色图像输入到网络中,充分利用了SAR图像数据的获取特点,同时用池化层替代了展平操作,降低了网络参数数量。实验结果表明,即便在小规模SAR数据集上,该卷积网络具有识别精度高的特点,对同类别不同型号的目标也具有出色的识别表现。 相似文献
5.
随着深度学习在计算机视觉领域取得令人鼓舞的成果,基于深度学习技术实现对合成孔径雷达(Synthetic Aperture Radar, SAR)图像中时敏目标的分类识别已成为可能,实测SAR图像中时敏目标自动识别应用再次吸引了全球广大学者的目光。受客观条件所限,高质量实测SAR目标样本切片的获取代价大、成本高、数量少,且SAR对成像参数和目标姿态敏感,导致SAR图像面临的少样本条件下的目标识别问题更为突出。本文深度挖掘MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集的目标识别潜力,针对10类SAR图像车辆目标分类识别潜能进行了研究和分析。为衡量不同样本数量条件下SAR目标识别潜能,同时降低对目标样本选取的随机性,提出利用不同数量实测训练样本,生成全角度训练数据集,对参与训练的样本进行规范化和合理化采样处理;将全角度扩充后得到的训练样本集作为标准模板数据集,通过遍历模板数据集,采用似然比相似性度量(Likelihood Ratio Similarity Measure, LiRSM)来衡量目标相似性,利用... 相似文献
6.
大多数传统的合成孔径雷达(SAR)目标识别方法仅仅使用了单一的幅度特征,但是由于斑点噪声的存在,仅仅使用幅度特征会限制识别的性能。为了进一步提高SAR目标识别的性能,该文提出了一个基于深度森林的多级特征融合SAR目标识别方法。首先,在特征提取阶段,提取了多级幅度特征和多级密集尺度不变特征变换(Dense-SIFT)特征。幅度特征反映了目标反射强度,Dense-SIFT特征描述了目标的结构特征。而多级特征可以从局部到全局表征目标。随后,为了更完整、充分地反映SAR目标信息,借鉴深度森林的思想对多级幅度特征和多级Dense-SIFT特征进行联合利用。一方面通过堆叠的方式不断将多级幅度特征和多级Dense-SIFT特征进行融合,另一方面通过逐层的特征变换挖掘深层信息。最后利用得到的深层融合特征对目标进行识别任务。该文在MSTAR数据集上进行对比实验,实验结果表明所提算法在性能方面取得了提升,且其性能对超参数设置具有一定的鲁棒性。 相似文献
7.
大多数传统的合成孔径雷达(SAR)目标识别方法仅仅使用了单一的幅度特征,但是由于斑点噪声的存在,仅仅使用幅度特征会限制识别的性能.为了进一步提高SAR目标识别的性能,该文提出了一个基于深度森林的多级特征融合SAR目标识别方法.首先,在特征提取阶段,提取了多级幅度特征和多级密集尺度不变特征变换(Dense-SIFT)特征.幅度特征反映了目标反射强度,Dense-SIFT特征描述了目标的结构特征.而多级特征可以从局部到全局表征目标.随后,为了更完整、充分地反映SAR目标信息,借鉴深度森林的思想对多级幅度特征和多级Dense-SIFT特征进行联合利用.一方面通过堆叠的方式不断将多级幅度特征和多级Dense-SIFT特征进行融合,另一方面通过逐层的特征变换挖掘深层信息.最后利用得到的深层融合特征对目标进行识别任务.该文在MSTAR数据集上进行对比实验,实验结果表明所提算法在性能方面取得了提升,且其性能对超参数设置具有一定的鲁棒性. 相似文献
8.
基于目标CSAR回波模型的SAR自动目标识别算法 总被引:1,自引:0,他引:1
基于模板的SAR目标识别需要存储海量的目标模板,给识别系统的设计和算法效率的提高都造成了严重的困难,而基于模型的方法克服了上述问题,并已成为下一代目标识别算法研究的热点。该文提出的基于圆周SAR(CSAR)回波模型的识别算法,从目标的3维CAD模型出发,利用弹射线原理构建目标的CSAR回波,并通过在线实时预测目标聚束SAR图像来完成识别。同传统的基于散射中心模型的算法相比,利用CSAR回波的算法不仅预测结果准确,而且算法简单高效。仿真实验验证了算法的有效性,并比较了相关算法的优缺点。 相似文献
9.
为了提高合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别性能,提出了结合二维内蕴模函数(Bidimensional Intrinsic Mode Function,BIMF)与贝叶斯多任务学习的SAR目标识别方法。采用二维经验模态分解获得SAR图像的多层次BIMF,从而更好地描述原始图像的细节信息。为了获得稳健的决策,采用贝叶斯多任务学习对原始SAR图像及其多层次的BIMF进行联合稀疏表示。最后,通过比较各个类别对于测试样本的重构误差判定目标类别。基于MSTAR数据集在多种条件下对提出方法进行了验证实验,结果证明了方法的有效性。 相似文献
10.
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。 相似文献
11.
12.
近年来,卷积神经网络(CNN)已广泛应用于合成孔径雷达(SAR)目标识别。由于SAR目标的训练数据集通常较小,基于CNN的SAR图像目标识别容易产生过拟合问题。生成对抗网络(GAN)是一种无监督训练网络,通过生成器和鉴别器两者之间的博弈,使生成的图像难以被鉴别器鉴别出真假。本文提出一种基于改进的卷积神经网络(ICNN)和改进的生成对抗网络(IGAN)的SAR目标识别方法,即先用训练样本对IGAN进行无监督预训练,再用训练好的IGAN鉴别器参数初始化ICNN,然后用训练样本对ICNN微调,最后用训练好的ICNN对测试样本进行分类。MSTAR实验结果表明,提出的方法不仅能够在训练样本数降至原样本数30%的情况下获得高达96.37%的识别率,而且该方法比直接采用ICNN的方法具有更强的抗噪声能力。 相似文献
13.
14.
15.
16.
17.
18.
传统的SAR目标检测算法容易受到复杂背景的干扰,因此利用被广泛应用于图像目标检测和识别领域的Faster-RCNN方法,对复杂背景下的SAR图像进行车辆目标检测实验。在对样本数据进行预处理后对车辆真实位置进行标记,采用可视化的深度学习客户端对样本进行裁剪和旋转,扩充样本数据库。利用已充分训练的模型权重对ZF和VGG-16网络进行预训练,再利用扩充的数据集进行训练和验证,并使用包含MiniSAR数据的测试集进行测试。实验证明,ZF网络和VGG-16的检测效果类似,但是ZF网络因为网络层数更少因而检测耗时更短。 相似文献
19.
针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别问题,提出了一种基于集成卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标识别方法。首先对原始数据集进行数据增强的预处理操作,以扩充训练样本;接着通过重采样的方法从训练样本中获取不同的训练子集,并在训练各基分类器时引入Dropout和Padding操作,有效增强了网络泛化能力;然后采用Adadelta算法与Nesterov动量法结合的思想来优化网络,提高了网络的收敛速度和识别精度;最后采用相对多数投票法对基分类器的分类结果进行集成。在MSTAR数据集上进行的实验结果表明,集成后的模型识别准确率达到99.30%,识别性能优于单个卷积神经网络,具有较强的泛化能力和较好的稳健性。 相似文献