首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
考虑动态回复过程的6005A铝合金动态力学模型   总被引:1,自引:0,他引:1  
客车车厢用6系铝合金构件在碰撞、冲击过程中会在短时间内产生很大变形,其变形过程中动态力学行为是结构设计中的核心问题。采用Instron系列拉伸试验机,对6005A型铝合金经T6热处理后的试样进行动态拉伸试验,获得材料应变率从0.001 s–1到87 s–1范围内,从弹塑性变形直至断裂的完整应力应变曲线。试验结果表明,6005A型铝合金具有一定的应变率效应,随着应变率提升,铝合金材料的屈服极限有所上升而抗拉强度下降。根据试验所得真实应力-应变曲线,建立6005A型铝合金的Johnson-Cook本构模型,并依据位错理论,考虑加工硬化和动态回复过程对于流动应力的影响,对Johnson-Cook模型进行修正。修正模型在试验范围内,很好地预测了中等应变率下材料动态力学行为。  相似文献   

2.
材料力学性能的研究一直是结构碰撞领域内的研究重点。通过应力应变曲线或复杂的数学表达式来描述材料的力学性能的数学表达式称为材料的本构方程。通过试验手段对前纵梁材料力学性能进行系统研究,进行准静态拉伸试验和高速拉伸试验,获得了不同应变率下的应力应变曲线,并依据试验结果标定了Johnson-Cook本构模型,通过获得的试验数据构建常用的金属Johnson-Cook本构强化模型,为有限元仿真的精确模拟提供了数据支撑。  相似文献   

3.
GH4169高温合金的动态力学行为及其本构关系   总被引:1,自引:0,他引:1  
采用材料试验机对GH4169高温合金光滑试样与缺口试样进行应变速率为0.000 1~0.010 0s-1下的室温准静态拉伸试验,再利用分离式霍普金森拉、压杆装置进行温度为20~400℃、应变速率为1×102~4×103 s-1下的动态拉伸、压缩试验,得到准静态和动态下的真应力-真应变曲线与失效应变;根据试验数据,采用分步拟合法确定了Johnson-Cook材料模型和失效模型参数,基于Johnson-Cook模型对动态压缩行为进行模拟,并进行试验验证。结果表明:GH4169高温合金的屈服强度随应变速率的增大而增大,随试验温度的升高而降低,该合金具有应变速率强化效应和温度软化效应;模拟结果与试验结果吻合得较好,真应力-真应变曲线的最大相对误差为5.91%,表明经修正后的Johnson-Cook模型可较好地描述GH4169高温合金的动态力学行为。  相似文献   

4.
通过不同应变速率(0.001~500 s-1)下的室温拉伸试验,研究了车用HC340/590DP、HC700/980DP双相高强钢的动态力学性能;分别采用Johnson-Cook模型、Swift-Hockett/Sherby模型,以及将Swift-Hockett/Sherby模型引入到Ludwik模型中的修正模型对2种钢的流动应力-应变曲线进行拟合,对比分析3种本构模型的拟合结果。结果表明:随着应变速率的增加,2种钢均表现出增强增塑现象;Johnson-Cook模型、Swift-Hockett/Sherby模型和修正Ludwik模型的拟合度平均值分别为0.950,0.999,0.997;修正Ludwik模型既具有各应变速率间应力耦合的特点,又保持了高拟合精度,可以准确描述车用双相高强钢的动态流变行为。  相似文献   

5.
《机械强度》2019,(6):1321-1326
通过动、静力学试验获得了7003铝合金材料在不同应力三轴度和不同应变率条件下的应力-应变曲线和材料断裂特性参数,利用试验结果拟合了对应变率敏感的Johnson-Cook材料本构模型参数。试验结果表明7003铝合金是一种典型的塑性金属材料,断裂破坏过程具有一定的应变率敏感性,且断裂应变随着应力三轴度增高而降低;通过LSDYNA仿真软件模拟了7003铝合金零件的断裂全过程,仿真结果与试验吻合良好,研究结果可以为7003铝合金薄壁类零件的设计和分析提供参考。  相似文献   

6.
6061-T651铝合金动态力学性能及J-C本构模型的修正   总被引:3,自引:1,他引:2  
为合理描述6061-T651铝合金的应力流动行为,利用万能材料试验机和霍普金森压杆,分别进行准静态、高温和高应变率下的材料力学性能测试,获得材料在不同条件下的应力应变曲线。基于试验结果,修正Johnson-Cook本构模型得到MJC(Modified Johnson-Cook)模型,并标定MJC模型各项参数。为校验MJC模型及参数的有效性,利用一级气炮发射直径为5.95 mm的圆柱弹体冲击刚性靶的Taylor杆试验以及直径为12.68 mm的刚性弹撞击厚度为2 mm靶板的试验。最后,采用ABAQUS/Explicit有限元软件建立Taylor杆和弹靶冲击试验的三维模型,基于MJC本构模型进行Taylor杆冲击、以及结合MMC(Modified Mohr-Coulomb)断裂准则进行弹靶冲击的数值模拟计算。研究结果表明,修正的MJC本构模型能够有效地描述6061-T651铝合金材料在大应变、高应变率和高温下材料的应力流动行为和变形行为。  相似文献   

7.
以S580B钢为研究对象,利用高速液压伺服材料试验机开展了其在中、低应变率范围的动态拉伸试验。提出了一种借助静态标定试验来间接测量动态载荷的方法,通过数字散斑相关方法测量应变场,获得了不同应变率下的真实应力-应变曲线,试验结果显示此材料具有明显的应变硬化效应和应变率敏感性。基于试验数据,采用Johnson-Cook模型拟合得到了S580B钢的动态本构方程,以其作为试验件有限元仿真的材料参数,仿真结果验证了拟合的动态本构方程能够较为准确地表征S580B钢的动态力学特性。  相似文献   

8.
采用分离式霍普金森压杆装置对6013-T4铝合金在不同温度(25,200,300℃)和应变速率(1 000,2 000,3 000,4 000,5 000s-1)下进行了动态压缩试验,研究了该铝合金在冲击载荷作用下的动态力学行为,并采用试验拟合得到的Johnson-Cook本构方程,对动态冲击试验进行了数值模拟。结果表明:6013-T4铝合金具有明显的应变速率和应变硬化效应,动态流变应力随变形温度的升高而减小;室温下合金的屈服强度对应变速率不敏感,但随变形温度的升高,屈服强度的应变速率敏感性增强;基于室温准静态与不同温度和应变速率下的动态真应力-真应变曲线,确定了铝合金的Johnson-Cook本构方程;不同温度和应变速率下真应力-真应变曲线的数值模拟结果与本构方程拟合和试验结果均吻合的较好。  相似文献   

9.
针对汽车用合金化镀锌深冲钢板(DC53D+ZF),采用准静态及动态拉伸试验,对不同应变率下钢板的动态变形行为进行研究,得到0~500 s–1应变率范围内的6种应变率下的应力应变关系,在试验结果的基础上,推导出该钢板的Johnson-Cook本构模型.为进一步验证该本构模型,基于矩形梁碰撞的仿真模型,对不考虑应变率、Johnson-Cook、Cowper-Symonds模型及试验数据进行对比分析,所推导的J-C模型与试验结果吻合较好.表明所得到的模型可以很好地描述DC53D+ZF材料高应变率下的动态变形行为.  相似文献   

10.
利用同步组装的高温分离式Hopkinson压杆试验装置,对TC4-DT钛合金材料分别进行了常温下不同应变率(930~9700s-1)和应变率为5000s-1时不同温度下(20~800℃)的动态力学性能测试,获得了各种冲击载荷下的应力-应变曲线。试验数据表明,TC4-DT材料具有应变率增塑效应且存在着临界应变率值,当应变率高于此值时应变率敏感性增强明显,此外随着材料加热温度的升高,软化效应减弱。利用试验所得的数据拟合了基于Power-Law和Johnson-Cook两种热-黏塑性本构方程且获得这两种动态本构模型参数,并将所得的两种拟合曲线与试验所得数据进行对比分析,结果表明两曲线吻合度都较好,此外还对这两种曲线的拟合精度进行对比,对比结果表明两种模型的拟合误差相差不大,但是Power-Law模型拟合精度要略优于Johnson-Cook模型的拟合精度。  相似文献   

11.
在常温下对SUS301L-MT不锈钢进行了应变速率为0.000 5 s-1的准静态和0.1~500 s-1的动态拉伸试验,基于经典J-C模型拟合得到其应力-应变曲线,通过最大拟合优度和匹配优度确定应变速率敏感系数,对经典J-C本构模型的模拟准确性进行分析;引入动态放大模量确定马氏体相变强化和绝热温升软化的临界应变,对J-C模型进行修正,并对修正模型的拟合结果进行了验证。结果表明:经典J-C本构模型无法准确描述试验钢在高应变速率塑性变形时的马氏体相变强化效应和绝热温升软化效应;修正后的J-C本构模型可准确描述应变速率在0.000 5~500 s-1时试验钢的力学行为,其匹配优度高达0.985,表明该模型合理有效。  相似文献   

12.
为了能够准确地反映材料成形方向对其动态力学性能的影响,利用电子万能试验机及分离式霍普金森压杆(SHPB)装置,对航空铝合金7050-T7451板材沿不同成形方向(法向ND,横向TD,轧向RD)取样,并进行准静态加载试验和动态冲击剪切试验。结果表明:成形方向是影响材料准静态和动态力学性能的重要因素之一,在动态冲击剪切过程中,铝合金7050-T7451表现出一定的应变率敏感性和正应变率强化效应。基于材料的成形方向影响规律,构建包含应变率敏感函数项的修正的Johnson-Cook本构模型,并对比验证修正模型与试验数据的结果,证明了修正的、包含应变率函数项的材料本构模型更适用于描述不同成形方向下的材料动态力学性能,该模型能够为建立精确可靠的各向异性材料仿真模型提供数据支持。  相似文献   

13.
利用Gleeble-3500型热模拟机对AM60镁合金板进行热拉伸试验,研究了镁合金在变形温度200~350℃、应变速率0.01~0.1 s-1下的热变形行为;对Johnson-Cook方程应变硬化部分进行修正并考虑应变速率和变形温度的耦合效应,基于热拉伸试验数据建立了修正Johnson-Cook本构方程,利用该方程进行冲压有限元模拟,并进行了试验验证。结果表明:AM60镁合金的流变应力与应变速率呈正相关,与变形温度呈负相关;采用修正Johnson-Cook本构模型预测得到AM60镁合金冲压真应力-真应变曲线与试验结果吻合较好,最大相对误差为18.28%,相比于未修正模型降低了57.61%;模拟得到200~350℃下冲压成形的筒形件成形良好,无表面缺陷,与试验结果一致。  相似文献   

14.
在0.08,35,110,210,550s~(-1)的应变速率下对6061铝合金进行单轴拉伸试验,对其动态拉伸性能进行研究,得到不同应变速率下的真应力-真应变曲线;基于Johnson-Cook本构模型,建立该铝合金的塑性变形本构模型,并对该模型进行了验证。结果表明:随着应变速率增加,6061铝合金的屈服强度增大,断后伸长率降低,但其断裂强度则未发生明显变化;建立的本构模型能够很好地描述6061铝合金在塑性变形过程中流变应力的变化。  相似文献   

15.
《机械强度》2015,(4):607-612
利用分离式Hopkinson压杆实验装置(SHPB)对无氧铜进行了常温下不同应变率(2 500 s-1~15 500 s-1)的动态力学性能进行了测试,得到常温下无氧铜的真实应力-真实应变曲线,并分别通过Power-Law本构模型和JohnsonCook本构模型对其进行了拟合。结果表明:无氧铜在受到动态压缩载荷的作用时,其塑性流动应力对应变率并没有表现出敏感的趋势,但对于材料的屈服应力则在应变率高于14 000 s-1时明显增加,同时材料的应变强化效果降低,另外,相较于Johnson-Cook本构模型,Power-Law本构模型能够更准确的预测无氧铜在高应变率下的塑性流动应力。  相似文献   

16.
使用万能材料试验机、霍普金森拉杆和霍普金森压杆装置研究了航空发动机机匣材料GH907高温合金在常温下的准静态力学性能及20~400℃下的动态力学性能;基于试验结果,拟合得到Johnson-Cook(J-C)本构模型和失效模型参数,并对试验合金动态压缩过程进行模拟以验证本构模型参数的有效性.结果表明:常温下在0~3000 s-1应变速率范围内拉伸时,试验合金具有明显的应变速率效应,但是压缩时对应变速率不敏感;在20~400℃温度范围内,试验合金的软化效应明显;建立的J-C模型能够较为准确地预测该合金在不同温度和应变速率下的力学行为,试样几何尺寸和最大应力的仿真结果与试验结果的相对误差在2%以内.  相似文献   

17.
铝合金热冲压过程中板料在非等温连续冷却过程中发生塑性变形.为了表征2219铝合金在热冲压条件下的变形行为,基于Gleeble热模拟试验机开发了新型夹具和高温高速DIC全场应变测试方法,在350~475℃,0.01~1 s-1应变速率下进行热拉伸试验.综合Swift模型的强硬化和Hockett-Sherby(H-S)模型的弱硬化特性对Johnson-Cook(J-C)模型进行了修正,并提出新的混合硬化模型,通过建立混合硬化因子与温度和应变率的关系实现了各种变形条件下2219铝合金高温变形行为准确描述,利用试验所获流变曲线对本构模型参数进行了识别,识别结果显示修正J-C模型能够准确描述2219铝合金的高温流变行为.建立航空发动机唇口特征件热冲压成形仿真模型,仿真结果显示预测零件壁厚减薄率与试验测试结果较为吻合,验证了提出变形测试方法和修正J-C模型的可靠性.  相似文献   

18.
晶粒大小是影响多晶金属材料力学性能的重要因素之一,研究细晶T2纯铜在高温、高应变率下的动态力学性能并建立其本构模型对切削加工有着重要意义。通过电子力能测试仪进行T2纯铜试样准静态压缩试验,并利用霍普金森压杆装置完成了不同应变率和不同温度的动态压缩试验。试验结果表明,纯铜材料具有明显的应变强化效应和温度软化效应,其动态压缩下的强度高于准静态压缩,但在高应变率区域内,并无明显的应变率强化效应。基于Johnson-Cook本构模型得到了细晶T2纯铜本构方程参数,拟合曲线与试验结果吻合较好。  相似文献   

19.
《工具技术》2015,(10):48-51
使用分离式霍普金森压杆(SHPB)实验装置测得1060铝合金在不同温度及应变速率下的动态力学性能,并基于power-law本构方程对测得的实验数据进行拟合获得模型参量。结果表明:1060铝合金冲击加载过程中发生高温软化,其峰值应力和流变应力随变形温度升高而降低;当应变率达到4000/s时,1060铝合金的强度和流动应力相比于低应变速率条件下均明显增大,合金表现出强烈的应变强化效应;拟合得到的1060铝合金power-law动态本构模型能较好地预测实验中材料的流动应力。  相似文献   

20.
通过对B280VK低合金高强钢在应变率分别为0.003、20、80、180和530/s下进行高速拉伸试验,对其不同应变率下的动态力学性能进行研究,得到不同应变率下B280VK低合金高强钢的应力-应变曲线,并对不同应变率下的材料延伸率、流变应力、抗拉强度以及显微组织变化进行了分析。试验结果表明,随着材料应变率的升高,B280VK低合金高强钢的流变应力、屈服强度和抗拉强度均增大。另外,基于Johnson-Cook本构模型,建立该B280VK低合金高强钢应变率相关性塑性变形本构模型,本构方程模拟结果与试验结果吻合程度较为良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号