首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The work focuses on experimental examination of the fatigue behavior of magnesium alloy AZ31 produced by three different procedures: squeeze casting (SC), hot rolling (HR), and equal-channel angular pressing (ECAP). The microstructures produced were studied by light and transmission electron microscopy (TEM). Squeeze-cast AZ31 had low porosity and coarse grains, while hot-rolled material showed microstructure with grain size of 3 to 20 μm. The finest grain structure with the average grain size of about 1 to 2 μm was found in the material pressed 4 times at 200 °C using the ECAP technique, route B c . It was shown that low- and high-cycle fatigue behavior under symmetric loading at room temperature and with loading frequency of 20 Hz is strongly dependent on the technique employed in producing the alloy. The ECAP was shown to improve the fatigue life of the material in the low-cycle region over that of the squeeze-cast material. However, the fatigue life of AZ31 after ECAP was slightly lower than that of the hot-rolled material. In the high-cycle region, the hot-rolled material and the material that underwent ECAP exhibit the same fatigue strength, which is superior to that of the squeeze-cast alloy. Fatigue crack initiation and the character of fracture were examined by means of scanning electron microscopy. This article is based on a presentation made in the symposium entitled “Ultrafine-Grained Materials: from Basics to Application,” which occurred September 25–27, 2006 in Kloster Irsee, Germany.
Z. Zúberová (Cand. Scient. Phys.)Email:
  相似文献   

9.
10.
11.
Annealing studies at different temperatures, as well as those conducted with 940 MPa hydrostatic pressure, were conducted on amorphous ribbons of Al87Ni7Gd6. The studies were performed to investigate the evolution of structure under different conditions and to particularly examine the effects of superimposed hydrostatic pressure during annealing. This amorphous alloy devitrifies at low temperatures via the precipitation of nano-crystalline α-Al particles. The effects of these various exposures on the amount of devitrification have been quantified using a variety of analytical techniques (i.e., X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM)). In addition, the effects of devitrification on the mechanical properties have been quantified using microhardness indentation and uniaxial tension tests. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.
J.J. Lewandowski (Leonard Case, Jr., Professor of Engineering)Email:
  相似文献   

12.
13.
14.
The crystallography of bainitic ferrite nucleated at austenite grain boundaries was studied in an Fe-9Ni-0.15C (mass pct) alloy. The relationship between bainitic ferrite orientations (variants) and grain boundary characters, i.e., misorientation and boundary orientation, was examined by electron backscatter diffraction analysis in scanning electron microscopy and serial sectioning observation. Bainitic ferrite holds nearly the Kurdjumov–Sachs (K-S) orientation relationship with respect to the austenite grain into which it grows. At the beginning of transformation, the variants of bainitic ferrite are severely restricted by the following two rules, both advantageous in terms of interfacial energy: (1) smaller misorientation from the K-S relationship with respect to the opposite austenite grain and (2) elimination of the larger grain boundary area by the nucleation of bainitic ferrite. As the transformation proceeds, variant selection establishing plastic accommodation of transformation strain to a larger extent becomes important. Those kinds of variant selection result in formation of coarse blocks for small undercooling. This article is based on a presentation given in the symposium entitled “Solid-State Nucleation and Critical Nuclei during First Order Diffusional Phase Transformations,” which occurred October 15–19, 2006 during the MS&T meeting in Cincinnati, Ohio under the auspices of the TMS/ASMI Phase Transformations Committee.
T. Furuhara (Professor)Email:
  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号