首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The P2 purinoceptor antagonist suramin reverses skeletal muscle paralysis evoked by non-depolarizing neuromuscular blocking agents in vitro and in vivo. To further study the action of suramin on neuromuscular transmission, (miniature) endplate potentials ((m.)e.p.ps), motor nerve terminal currents and the release of radiolabeled acetylcholine was measured in isolated nerve-muscle preparations. In preparations paralysed by low Ca2+/high Mg2+ conditions, suramin (10 microM-1 mM) induced a concentration-dependent decrease in quantal content of the e.p.ps without affecting m.e.p.ps. Suramin reversed neuromuscular block by d-tubocurarine in these preparations. In erabutoxin paralysed preparations, suramin (40 microM-1 mM) inhibited the motor nerve terminal currents related to Ca2+ influx concentration-dependently, but did not affect Na+ currents. Suramin-induced inhibition of Ca2+ currents was not antagonized by ATP gamma S. Suramin (300 microM) reduced [14C]acetylcholine outflow in non-paralysed rat phrenic nerve-hemidiaphragm preparations by 32%. As suramin did not chelate Ca2+, these results indicate that suramin inhibits neuromuscular transmission by blocking prejunctional Ca2+ channels, thereby decreasing acetylcholine release upon nerve stimulation.  相似文献   

2.
Crustacean and insect neuromuscular junctions typically include numerous small synapses, each of which usually contains one or more active zones, which possess voltage-sensitive calcium channels and are specialized for release of synaptic vesicles. Strength of transmission (the number of quantal units released per synapse by a nerve impulse) varies greatly among different endings of individual neurons, and from one neuron to another. Ultrastructural features of synapses account for some of the physiological differences at endings of individual neurons. The nerve terminals that release more neurotransmitter per impulse have a higher incidence of synapses with more than one active zone, and this is correlated with more calcium build-up during stimulation. However, comparison of synaptic structure in neurons with different physiological phenotypes indicates no major differences in structure that could account for their different levels of neurotransmitter release per impulse, and release per synapse differs among neurons despite similar calcium build-up in their terminals during stimulation. The evidence indicates differences in calcium sensitivity of the release process among neurons as an aspect of physiological specialization.  相似文献   

3.
Effects of the antiepileptic drug carbamazepine on nerve action potential and transmitter release in mouse neuroblastoma-glioma hybrid cells (NG108-15) and the frog neuromuscular junction were studied. Carbamazepine within a concentration range of 0.1-0.5 mmol/L reduced the peak height of the action potential of the NG108-15 cells, whereas the membrane potential and membrane resistance were unaffected. Voltage clamp revealed that the decrease in the action was due to the blockage of the Na+, delayed K+ and transient Ca2+ currents. Carbamazepine did not affect Ca(2+)-activated and A type K+ currents and long-lasting Ca2+ current. In the frog neuromuscular junction, carbamazepine decreased the mean quantal content by a parallel shift in the frequency augmentation-potentiation (FAP) relation. It is concluded that carbamazepine blocks the voltage-dependent Na+, delayed K+, and transient Ca2+ currents and quantal transmitter release through a decrease of nerve excitation.  相似文献   

4.
The effects of inorganic lead (PbCl2) and cadmium (DdCl2) on the pressor response of rabbit saphenous arteries produced by sympathetic nerve stimulation were examined. A 1- to 3-cm length of artery was removed, placed in a bath containing mammalian Ringer solution, and perfused with the same solution at a constant rate sufficient to maintain a 40-60 mmHg perfusion pressure. Increases in perfusion pressure resulting from electrical stimulation -f periarterial nerve endings were reduced or completely blocked by the addition of 5-20 muM lead or cadmium to the bathing solution for a period of 15-30 min. Responses to norepinephrine or to direct electrical stimulation of the muscle remained relatively unaffected. During lead or cadmium blockade, the response to nerve stimulation could be restored by a fourfold increase in calcium concentration. It is concluded that lead and cadmium reduce the response to sympathetic nerve stimulation primarily through an effect on presynaptic nerve terminals.  相似文献   

5.
1. The mechanisms underlying the postjunctional blockade induced by phenthonium [N-(4-phenyl) phenacyl 1-hyoscyamine] were investigated in mammalian and amphibian muscles. This muscarinic antagonist was previously shown to enhance specifically the spontaneous acetylcholine (ACh) release at concentrations that blocked neuromuscular transmission. 2. In both rat diaphragm and frog sartorius muscles, phenthonium (Phen, 1-100 microM) depressed the muscle twitches elicited by nerve stimulation (IC50: 23 microM and 5 microM, respectively), and blocked the nerve-evoked muscle action potential. The neuromuscular blockade was not reversed after incubation with neostigmine. 3. Equal concentrations of Phen decreased the rate of rise and prolonged the falling phase of the directly elicited action potential in frog sartorius muscle fibres, indicating that the drug also affects the sodium and potassium conductance. 4. Phen (50 and 100 microM) protected the ACh receptor against alpha-bungarotoxin (BUTX) blockade in the mouse diaphragm allowing recording of endplate potentials and action potentials after 5 h wash with physiological salt solution. 5. Phen (10-100 microM) produced a concentration- and voltage-dependent decrease of the endplate current (e.p.c.), and induced nonlinearity of the current-voltage relationship. At high concentrations Phen also shortened the decay time constant of e.p.c (tau(e.p.c.)) and reduced its voltage sensitivity. 6. At the same range of concentrations, Phen also reduced the initial rate of [125I]-BUTX binding to junctional ACh receptors of the rat diaphragm (apparent dissociation constant = 24 microM), the relationship between the degree of inhibition and antagonist concentration being that expected for a competitive mechanism. 7. It is concluded that Phen affects the electrical excitability of the muscle fibre membrane, and blocks neuromuscular transmission through a mechanism that affects the agonist binding to its recognition site and ionic channel conductance of the nicotinic ACh receptor.  相似文献   

6.
Characteristics of muscular contraction induced by magnetic stimulation were studied using isolated gastrocnemius muscles of a frog. The figure-eight coil position was regarded as 0 degrees when the direction of induced current was parallel to the muscle fiber axis, and 90 degrees when the induced current was perpendicular to the muscle fiber axis. Muscular contraction readily occurred with lower outputs of magnetic stimulation at 0 degrees and 180 degrees, but it was weak at 90 degrees and 270 degrees. Magnetic stimulation did not directly induce muscular contraction but it acted on the synapses forming end plates to muscle cells, and muscular contraction occurred if the direction of the eddy current was parallel to the nerve which innervated the muscle cells.  相似文献   

7.
Conventional electrophysiological techniques were used to study the effects of Ba on the release of acetylcholine (ACh) from frog motor nerve terminals. Equimolar substitution of Ba for Ca eliminated end-plate potentials (e.p.ps) without a corresponding decline in the amplitude of the nerve terminal action potential. Miniature end-plate potentials (m.e.p.ps) were readily detectable in Ba solutions despite a depolarized muscle membrane. Studies on the e.p.p. in curarized preparations bathed with different concentrations of Ca and Ba suggest that Ba may compete with Ca in the process by which depolarization of the nerve terminal leads to the release of ACh. Repetitive nerve stimulation at 1 Hz in Ba solutions caused 5-20 fold increases in m.e.p.p. frequencies (7 experiments). Stimulation of Ba-bathed preparations at 10 Hz elevated m.e.p.p. frequencies to very high levels that could not be measured accurately ('100/s). It is suggested that the asynchronous discharge of m.e.p.ps produced by repetitive nerve stimulation is the electrophysiological correlate of the evoked ACh outflow in Ba solutions detected previously by bioassay of ther perfusion fluid.  相似文献   

8.
We have been studying the mechanisms whereby pools of motor neurons establish a rostrocaudal bias in the position of their synapses in some skeletal muscles. The serratus anterior (SA) muscle of the rat displays a rostrocaudal topographic map before birth, and the topography is re-established after denervation. In this report, we explore the potential role of synaptic competition between innervating axons as a means of generating topographic specificity. We followed the progress of the reformation of this map in neonatal animals under conditions that enhanced the likelihood of observing synaptic competition. This was accomplished by forcing caudal axons to regenerate ahead of rostral axons onto a surgically reduced SA muscle. In this way, caudal (C7) motor neurons had unopposed access to vacated synaptic sites on the remaining rostral half of the SA before the return of the rostral (C6) axons. Intracellular recording revealed that 2 d after the second denervation, most of the reinnervated end plates contained only axons from the C7 branch; the remaining reinnervated end plates received input from C6 only or were multiply innervated by C6 and C7 axons. After 6 d, the pattern was reversed, with most end plates innervated exclusively by C6. After 17 d, axons from C6 were the sole input to reinnervated end plates. During the transition from C7- to C6-dominated input, at end plates coinnervated by C6 and C7 axons, the average quantal content from C6 was the same as that from C7; after 7 d, the quantal content of C6 was greater than that of C7. We have thus developed an experimental situation in which the outcome of synaptic competition is predictable and can be influenced by the positional labels associated with axons from different levels in the spinal cord.  相似文献   

9.
Synthetic compounds of 5/6/7/8 mono or disubstituted 1H/1-phenyl-9H pyrido (3,4 b) indole series were screened for their antifilarial activity in vitro by observing their effect on the spontaneous movements of the whole worm and nerve muscle preparation of S. cervi (Nematoda:Filarioidea). Of the 10 compounds tested only compound 87/581 was able to modify the movements of whole worm and nerve muscle preparation. This compound caused inhibition of spontaneous motility of whole worm and nerve muscle preparation of S. cervi characterized by initial short lasting stimulation followed by irreversible paralysis. The concentration required to inhibit the movements of n.m. preparation was 10 micrograms/ml as compared to 25 micrograms/ml for the whole worm preparation, suggesting a cuticular permeability barrier. Prior addition of compound 87/581 to the bath fluid blocked the calcium ion dependent stimulant effect of Ach and pyrantel pamoate. Further the initial stimulant effect of the compound was blocked by prior addition of nifedipine a calcium channel blocker. The findings suggest that the action is due to blockade of voltage sensitive calcium channels.  相似文献   

10.
Visually elicited activities in response to on-off of diffuse light and moving patterns were recorded from tectal neurons of the frog by means of perforated in vivo whole cell recording technique. Rise time histograms of EPSPs had a single or multiple peaks. Comparing the histogram patterns for each stimulus, retinal fiber classes and positions of synapses on the dendrites could be correlated. In most cells, R3 fibers made synapses on proximal dendrites, whereas R1/R2 fibers on distal dendrites, which was consistent with anatomical findings. Preliminary quantum analysis of EPSP amplitudes was performed by fitting the histograms with a binomial curve and parameters q and n were determined. The result showed that the number n of synapses on distal dendrites is larger than those on proximal dendrites.  相似文献   

11.
Synapses at larval neuromuscular junctions of the flies Drosophila melanogaster and Sarcophaga bullata are not distributed randomly. They have been studied in serial electron micrographs of two identified axons (axons 1 and 2) that innervate ventral longitudinal muscles 6 and 7 of the larval body wall. The following fly larvae were examined: axon 1--wild-type Sarcophaga and Drosophila and Drosophila mutants dunce(m14) and fasII(e76), a hypomorphic allele of the fasciclin II gene; and axon 2--drosophila wild-type, dunce(m14), and fasII(e76). These lines were selected to provide a wide range of nerve terminal phenotypes in which to study the distribution and spacing of synapses. Each terminal varicosity is applied closely to the underlying subsynaptic reticulum of the muscle fiber and has 15-40 synapses. Each synapse usually bears one or more active zones, characterized by dense bodies that are T-shaped in cross section; they are located at the presumed sites of transmitter release. The distribution of synapses was characterized from the center-to-center distance of each synapse to its nearest neighbor. The mean spacing between nearest-neighbor pairs ranged from 0.84 microm to 1.05 microm for axon 1, showing no significant difference regardless of genotype. The corresponding values for axon 2, 0.58 microm to 0.75 microm, were also statistically indistinguishable from one another in terminals of different genotype but differed significantly from the values for axon 1. Thus, the functional class of the axon provides a clear prediction of the spacing of its synapses, suggesting that spacing may be determined by the functional properties of transmission at the two types of terminals. Individual dense bodies were situated mostly at least 0.4 microm away from one another, suggesting that an interaction between neighboring active zones could prevent their final positions from being located more closely.  相似文献   

12.
The effect of nitric oxide synthase (NOS) inhibition and endothelin-A (ETA)-receptor blockade on neural sympathetic control of vascular tone in the gastrocnemius muscle was examined in anesthetized dogs under conditions of constant flow. Muscle perfusion pressure (MPP) was measured before and after NOS inhibition (Nomega-nitro-L-arginine methyl ester; L-NAME) and ETA-receptor blockade [cyclo-(D-Trp-d-Asp-Pro-D-Val-Leu); BQ-123]. Zero and maximum sympathetic nerve activities were achieved by sciatic nerve cold block and stimulation, respectively. In group 1 (n = 6), MPP was measured 1) before nerve cold block, 2) during nerve cold block, and 3) during nerve stimulation. Measurements under these conditions were repeated after L-NAME and then BQ-123. The same protocol was followed in group 2 (n = 6) except that the order of L-NAME and BQ-123 was reversed. MPP and muscle vascular resistance (MVR) increased after L-NAME and then decreased to control values after BQ-123. MVR decreased after BQ-123 alone and, with the addition of L-NAME, increased to a level not different from that observed during the control period. MVR fell during nerve cold block. This response was not affected by administration of L-NAME followed by BQ-123, but it was attenuated by administration of BQ-123 before L-NAME. The constrictor response during sympathetic nerve stimulation was enhanced by L-NAME; no further effect was observed with BQ-123, nor was the response affected when BQ-123 was given first. These findings indicate that endothelin contributes to 1) basal vascular tone in skeletal muscle and 2) the increase in skeletal muscle vascular resistance after NOS inhibition. Finally, nitric oxide "buffers" the degree of constriction in skeletal muscle vasculature during maximal sympathetic stimulation.  相似文献   

13.
The pattern of glycogen utilization was used to determine whether various muscle fiber types in the rat diaphragm are differentially susceptible to neuromuscular transmission failure. Muscle segments from the midcostal region were repetitively stimulated directly or via the phrenic nerve at 10 or 75 Hz. Muscle fiber types were classified histochemically as type I, IIa, or IIb. The amount of muscle fiber glycogen depletion with direct stimulation depended on stimulation rate (75 Hz > 10 Hz) and fiber type (IIb > IIa > I). However, with nerve stimulation, muscle fiber glycogen depletion did not display the same dependency on stimulation rate (10 Hz > 75 Hz), although with stimulation at 10 Hz, the same rank order of fiber depletion was observed (IIb > IIa > I). This rank order of depletion was reversed (I > IIa > IIb) during repetitive stimulation of the nerve at 75 Hz. By intermittently stimulating the muscle directly during continuous nerve stimulation, we determined that neuromuscular transmission failure contributed significantly to the force decline after 2 min of stimulation at 75 Hz but relatively little to the force decline after 2 min of stimulation at 10 Hz. A significantly greater fraction of the force decline could be attributed to neuromuscular transmission failure with repetitive bouts of stimulation at 10 Hz. We conclude that neuromuscular transmission failure causes a significant portion of the force decline after 8 min of stimulation at 10 and 75 Hz, that all diaphragm fiber types are susceptible to neuromuscular transmission failure, but that type IIb fibers are particularly susceptible at higher frequencies of stimulation.  相似文献   

14.
Tetanus (TeNT) neurotoxin and botulinum (BoNT, serotypes A-G) neurotoxins are di-chain bacterial proteins of MW-150 kDa which are also termed as clostridial neurotoxins. They are the only causative agents of two severe neuroparalytic diseases, namely tetanus and botulism. The peripheral muscle spasms which characterise tetanus are due to a blockade of inhibitory (GABAergic and glycinergic) synapses in the central nervous system leading to a motor neurones desinhibition. In contrast, botulism symptoms are only peripheral. They are consequent to a near irreversible and highly selective inhibition of acetyl-choline release at the motor nerve endings innervating skeletal muscles. During the past decade, the cellular and molecular modes of action of clostridial neurotoxins has been near completely elucidated. After a binding step of the neurotoxins to specific membrane acceptors located only on nerve terminals, BoNTs and TeNT are internalized into neurons. Inside their target neurones, the intracellularly active moiety (their light chain) is translocated from the endosomal compartment to the cytosol. The neurotoxins' light chains are zinc-dependent (endopeptidases which are specific for one among three synaptic proteins (VAMP/synaptobrevin, syntaxin or SNAP-25) implicated in neurotransmitter exocytosis. The presence of distinct targets for BoNTs and TeNT correlates well with the observed quantal alterations of neurotransmitter release which characterize certain toxin serotypes. In addition, evidence for a second, non-proteolytic, inhibitory mechanism of action has been provided recently. Most likely, this additional blocking action involves the activation of neurone transglutaminases. Due to their specific action on key proteins of the exocytosis apparatus, clostridial neurotoxins are now widely used as molecular tools to study exocytosis.  相似文献   

15.
1. Crayfish phasic motor synapses produce large initial excitatory postsynaptic potentials (EPSPs) that fatigue rapidly during high-frequency stimulation. Periodic in vivo stimulation of an identified phasic abdominal extensor motor neuron (axon 3) induced long-term adaptation (LTA) of neuromuscular transmission: initial EPSP amplitude became smaller and synaptic depression was significantly reduced. We tested the hypothesis that activity-induced synaptic fatigue-resistance seen during LTA was dependent upon, or correlated with, mitochondrial oxidative competence. 2. Periodic unilateral conditioning stimulation of axon 3 entering each of two adjacent homologous abdominal segments (segments 2 and 3) increased the synaptic stamina in both "conditioned" axons; mean final EPSP amplitudes, recorded after 20 min of 5-Hz test stimulation, were significantly larger than those measured with the same protocol from contralateral unstimulated axons. 3. During 5-Hz test stimulation of the conditioned axon 3 of segment 3, acute superfusion with 0.8 mM dinitrophenol or 20 mM sodium azide [inhibitors of oxidative adenosinetriphosphate (ATP) synthesis] produced increased synaptic depression. Drug-free saline superfusion of the conditioned axon 3 of segment 2 in these same animals did not affect the increased synaptic fatigue resistance seen in this segment. Thus both successful induction (in axon 3 of saline-perfused segment 2) and attenuation (in axon 3 of drug-perfused segment 3) of the increased synaptic stamina can be demonstrated with this twin-segment conditioning protocol. 4. Confocal microscopic imaging of mitochondrial rhodamine-123 (Rh123) fluorescence was used to assess relative oxidative competence of conditioned and unconditioned phasic axons. Conditioned phasic axons showed significantly higher mean mitochondrial Rh123 fluorescence than contralateral unstimulated axons. In the same preparations that showed increased postconditioning Rh123 fluorescence, the synaptic fatigue resistance measured from conditioned axon 3 was also significantly greater than that recorded from contralateral unstimulated axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root. Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, Prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3 6. Because mitochondrial Rh123 fluorescence is primarily dependent upon the oxidative activity of these organelles, our findings suggest that conditioning stimulation of phasic extensor axon 3 increases its mitochondrial oxidative competence and that the enhanced synaptic stamina seen during LTA in axon 3 is correlated with, and dependent upon, oxidative activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The neuronal nicotinic synapse in tissue slices of the adrenal medulla was studied with whole-cell patch-clamp. Excitatory postsynaptic currents (EPSCs) were evoked by local field stimulation or occurred spontaneously especially when external [K+] was increased. EPSCs were carried by channels sharing biophysical and pharmacological properties of neuronal-type nicotinic receptors (nAChRs). A single-channel conductance (gamma) of 43-45 pS was found from nonstationary variance analysis of EPSCs. Spontaneous EPSCs were tetrodotoxin-insensitive and Ca(2+)-dependent and occurred in burst-like clusters. Quantal analysis of spontaneous EPSCs gave a quantal size of 20 pA and amplitude histograms were well described by binomial models with low values of quantal content, consistent with a small number of spontaneously active release sites. However, rare large amplitude EPSCs suggest that the total number of sites is higher and that extrajunctional receptors are involved. Our estimates of quantal content and size at the chromaffin cell neuronal nicotinic synapse may be useful in characterizing central neuronal-type nicotinic receptor-mediated cholinergic synaptic transmission.  相似文献   

17.
Using the pig as a model, it was shown that stimulation of the distal nerve ending of the pudendal nerve leads to the isolated stimulation of the external anal sphincter muscle. No difference in pressure response was noted after application of between 0.5 and 1.5 mA unilateral or bilateral stimulation. Major advantages observed using between 1.5 and 2.5 mA bilateral stimulation; with a stimulation between 2.0 and 2.5 mA the pressure response was twice as high compared to unilateral stimulation. Continuous stimulation of the striated anal sphincter muscle leads to fatigue, reaching 50% fatigue after a median time between 40-90 s. In cyclic stimulation (alternation every 15 s, duration 20 min) a fatigue reaction was also seen. The peak pressure decreased after 20 min for a median of 11%, the final pressure was lowered in 15% following a logarithmic curve pattern. The experimental application of variable impulse ranges also caused pressure differences. Increasing the impulse range from 200 to 450 microseconds (peak pressure) vs. 400 microseconds (final pressure) resulted in a statistically significant pressure increase. Therefore, it was proven that selective stimulation of the external anal sphincter muscle can lead to a transient pressure increase, which possibly improves fecal continence.  相似文献   

18.
Effects of ifenprodil tartrate, a potent vasodilator, on the autonomic, peripheral and central nerve system were studied in experimental animals. In isolated vas deferens of guinea pigs, the contraction in response to noradrenaline and sympathetic nerve stimulation was competetively antagonized by ifenprodil 10(-7)--10(-5) M (pA2: 7.69 against noradrenaline). Ifenprodil (50 approximately 1,000 mug/kg i.v.) inhibited the contraction of cat nictitating membrane and dog urinary bladder induced by sympathetic nerve stimulation. Ifenprodil (250 approximately 1,000 mug/kg i.v.) lowered adrenaline-induced lethality (ED50: 360 mug/kg). The drug produced a hypermotility of guinea pig uterus, and showed a transient hypertonus of dog gut which was abolished by atropine. Ifenprodil (10 approximately 20 mg/kg i.v.) inhibited the propulsion of charcoal meal in mice. In Shay rats, more than 10 mg/kg i.m. of the drug inhibited the secretion of acid gastric juice and the ulceration. Ifenprodil showed a potent local anesthetic action in the guinea pig cornea and skin. The spontaneous EEG of rabbits showed a resting pattern (0.25 approximately 2 mg/kg i.v.) followed by an arousal pattern (5 approximately 10 mg/kg). Ifenprodil (20 approximately 100 mg/kg p.o.) potentiated a hypnosis induced by barbital, and potentiated pentylenetetrazol, strychnine and picrotoxin induced convulsion. The drug (20 and 100 mg/kg p.o.) lowered the body temperature of rats. From these results it is concluded that ifenprodil produces a blocking action of alpha-adrenoceptors in various smooth muscle preparations and a direct relaxation of the smooth muscle itself without affecting the motor and central nerve systems.  相似文献   

19.
1. The effects of exogenous ATP or adenosine on end-plate currents (e.p.cs; evoked by simultaneous action of a few hundred quanta of ACh) or on miniature e.p.cs (m.e.p.cs) were studied under voltage clamp conditions on frog sartorius muscle fibres. 2. ATP or adenosine (100 microM(-1) mM) reduced the e.p.c. amplitude but did not affect m.e.p.c. amplitude, decay time constant and voltage-dependence of m.e.p.c., suggesting that e.p.c. depression induced by these purines had presynaptic origin only. 3. The action of ATP, unlike that of adenosine, was prevented by the P2-purinoceptor antagonist suramin (100 microM). The stable ATP analogue alpha,beta-methylene ATP (100 microM), known to be desensitizing agent on P2X receptors, also abolished the depressant effect of ATP while sparing the action of adenosine. Concanavalin A, an inhibitor of ecto-5'-nucleotidase, did not affect the presynaptic action of exogenously applied ATP. 4. The presynaptic action of adenosine was prevented by theophylline (1 mM), a blocker of adenosine receptors, while the effect of ATP was not changed under these conditions. The selective blocker of A1 adenosine receptors, 8-cyclopentyl-1,3,dipropylxanthine (DPCPX; 0.1 microM), abolished the presynaptic action of adenosine but did not prevent the depressant effect of ATP. 5. The effects of ATP and adenosine (at nearly saturating concentration) were additive suggesting that these purines activated not only distinct receptors but also different intracellular signalling mechanisms. 6. In contrast to the hypothesis that at the neuromuscular junction ATP reduces transmitter release via enzymatic degradation to presynaptically active adenosine, our data suggest that ATP (through its own presynaptic receptors) directly inhibits ACh release. Thus, ATP and adenosine might be almost equipotent as endogenous prejunctional neuromodulators at the neuromuscular junction.  相似文献   

20.
Whole-cell patch clamp recording techniques were applied to periglomerular (PG) cells in slices of the frog olfactory bulb (OB) to study the properties of the excitatory synapses in the triad formed by the olfactory nerve (ON) and the dendrites of mitral/tufted (MT) cells and PG cells. The postsynaptic response evoked by ON stimulation was glutamatergic and could be dissected into NMDA and non-NMDA components of equivalent amplitudes. The dendro-dendritic synapse between MT and PG cells could be activated following antidromic stimulation of the lateral and medial olfactory tract (LOT and MOT). In this case the postsynaptic potentials had amplitudes and durations comparable to those obtained by ON stimulation, the neurotransmitter was glutamate, but the synapse was largely dominated by the slow NMDA component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号