首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用多聚甲醛代替37%的甲醛溶液,在20%NaOH水溶液催化下与苯酚逐步加成聚合,合成了可发性甲阶酚醛树脂。研究了多聚甲醛与苯酚物质的量比(F/P)对合成树脂固含量、粘度、游离苯酚、游离甲醛、凝胶时间、分子结构、分子质量、树脂热性能及泡沫性能的影响。结果表明,F/P值为1.8时,可得到性能优良成本较低的可发性甲阶酚醛树脂,树脂粘度1.4 Pa.s,游离甲醛质量分数1.17%,游离苯酚质量分数6.72%,羟甲基指数1.41,树脂分子质量在240左右,耐热性较好。  相似文献   

2.
A two‐level full factorial experimental design with three variables, formaldehyde‐to‐phenol (F/P) molar ratio, hydroxyl‐to‐phenol (OH/P) molar ratio, and condensation viscosity was implemented to determine the effect of the variables on the structure of phenol‐formaldehyde resol resins for paper overlay impregnation. Ten resins were prepared with F/P molar ratios between 1.9 and 2.3, OH/P molar ratios between 0.09 and 0.13, and condensation viscosities between 60 and 180 mPa s. The effect of these three independent variables on the chemical structure was analyzed by 13C‐NMR spectroscopy, on the molecular weight distribution by gel permeation chromatography, and on the reactivity by differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2942–2948, 2004  相似文献   

3.
As a part of abating the formaldehyde emission (FE) of urea–formaldehyde (UF) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1787–1792, 2006  相似文献   

4.
采用双层反应设备,通过碱酸分步催化法合成了一系列纯邻甲酚和以邻甲酚为主成分的邻甲酚系线形酚醛树脂。利用GPC、NMR等研究了催化剂氢氧化钠的用量、醛酚比以及酚的种类和用量对树脂的分子质量(Mw)、分子质量分布(Mw/Mn)及抗碱性等的影响。结果表明,氢氧化钠用量达到酚总质量的0.4%、醛酚比接近于1时可合成分子质量高、分子质量分布窄的树脂。可利用醛酚比控制树脂的分子质量,可通过调整酚的种类和用量控制树脂的双邻位缩聚值(Ro-o)以及酚醛树脂的质量与其所含酚羟基质量之比值。合成的树脂可用于PS版、热敏CTP版以及LCD用抗蚀剂等。  相似文献   

5.
以Ba(OH)2/NaOH为复合催化剂,采用两步加入甲醛法合成了高邻位PF(酚醛树脂)胶粘剂;然后以间苯二酚为改性剂,比较了不同n(甲醛)∶n(苯酚)配比、催化剂用量和反应时间等对PF胶粘剂性能的影响。结果表明:当反应时间为2.0 h、n(甲醛)∶n(苯酚)=1.7∶1.0,w(NaOH)=2.0%、w(Ba(OH)2)=3.0%和w(间苯二酚)=10.0%(均相对于苯酚质量而言)时,所得产物的性能相对较优;催化剂Ba(OH)2的引入,能有效提高邻位羟甲基含量、降低固化温度和加快固化速率;间苯二酚的引入,可有效加快PF胶粘剂的固化反应。  相似文献   

6.
在碱性条件下由竹材苯酚液化物和多聚甲醛制备出具有优良发泡性液化竹基酚醛树脂.考查了竹材液化物树脂化时间、温度、多聚甲醛与苯酚的物质的量比、氢氧化钠与苯酚物质的量比等因素对液化竹材酚醛树脂(BPE)黏度及其固含量的影响.结果表明,采用n(多聚甲醛)/n(苯酚)=1.2,树脂化时间为2 h,温度为70℃,n(氢氧化钠)/n...  相似文献   

7.
A modified phenol‐formaldehyde (PF) resin was synthesized under alkaline condition in varying proportion of casein up to 20% (w/w) of phenol. All the prepared resins were characterized by free phenol content, free formaldehyde content, viscosity measurements, number average molecular weight determination by conductometry and Infrared Spectroscopy (IR). Their curing kinetics was studied isothermally and by differential scanning calorimetry (DSC) on dynamic runs. The resin samples were cured using concentrated hydrochloric acid and hexamine individually. Cured resins were characterized by IR and Thermogravimetry (TGA). Glass fabric reinforced composites (GFRC) were fabricated by maintaining 40 : 60 proportion of resin to reinforcement material. The laminates thus formed were characterized for their mechanical properties and chemical resistance. Enhancements in thermal stability of the resin as well as toughness of composite with increase in casein content were observed for the resins studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
陆峻 《热固性树脂》2009,24(4):40-42
采用苯酚对三聚氰胺-甲醛树脂(MF)进行改性,研究了3种原料(苯酚、三聚氰胺和甲醛)不同配比下的合成产物的模塑料性能,优选出低酚摩尔分数(8%)的用于模塑料加工的苯酚改性蜜胺树脂(PMF)。该树脂中甲醛与三聚氰胺的物质的量比(F1/M)为1.75∶1,甲醛与苯酚的物质的量比(F2/P)为1.7∶1,甲醛和苯酚的物质的量之和与三聚氰胺物质的量比((F1+F2+P)/M)为2.5∶1。该树脂可提高模塑料的加工性能,降低加工能量损耗,改善制品的模塑性和耐冲击性。  相似文献   

9.
Phenol formaldehyde resin catalysed by calcium oxide was synthesised under controlled temperature, material mixture ratios. The effects of catalysts on chemical structure of phenol formaldehyde resin was investigated by high performance liquid chromatography, fourier transform infrared and differential scanning calorimetry. The results indicated that synthesis parameters, including formaldehyde to phenol molar ratio and catalyst to phenol ratio, influence the rate of cure. Phenol formaldehyde resin catalysed by calcium oxide showed higher addition of formaldehyde onto ortho positions of phenolic rings, whereas in the presence of sodium hydroxyde addition onto para sites was favoured. The result of DSC was applied to investigate that Phenol formaldehyde resin catalysed by calcium oxide could cure at a low temperature.  相似文献   

10.
Low‐condensation phenol‐formaldehyde (PF) resins coreacted under alkaline conditions with up to 42% molar urea on phenol during resin preparation yielded PUF resins capable of faster hardening times than equivalent pure PF resins prepared under identical conditions and presented better performance than the latter. The water resistance of the PUF resins prepared seemed comparable to pure PF resins when used as adhesives for wood particleboard. Part of the urea was found by 13C‐NMR to be copolymerized to yield the alkaline PUF resin; whereas, especially at the higher levels of urea addition, unreacted urea was still present in the resin. Increase of the initial formaldehyde to phenol molar ratio decreased considerably the proportion of unreacted urea and increased the proportion of PUF resin. A coreaction scheme of phenolic and aminoplastic methylol groups with reactive phenol and urea sites based on previous model compounds work has been proposed, copolymerized urea functioning as a prebranching molecule in the forming, hardened resin network. The PUF resins prepared were capable of further noticeable curing acceleration by addition of ester accelerators; namely, glycerol triacetate (triacetin), to reach gel times as fast as those characteristic of catalyzed aminoplastic resins, but at wet strength values characteristic of exterior PF resins. Synergy between the relative amounts of copolymerized urea and ester accelerator was very noticeable at the lower levels of the two parameters, but this effect decreased in intensity toward the higher percentages of urea and triacetin. 13C‐NMR assignements of the relevant peaks of the PUF resins are reported and compared with what has been reported in the literature for mixed, coreacted model compounds and pure PF and urea‐formaldehyde (UF) resins. The relative performance of the different PUF resins prepared was checked under different conditions by thermomechanical analysis (TMA) and by preparation of wood particleboard, and the capability of the accelerated PUF resins to achieve press times as fast as those of aminoplastic (UF and others) resins was confirmed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 359–378, 1999  相似文献   

11.
One of the main drawbacks that has prevented a wider use of phenol–formaldehyde (PF) resins in the manufacture of impregnated paper and wood composite panels is their relatively slow cure rate. In this study, the curing characteristic of PF resol resins catalyzed with MgO was studied with various formaldehyde (F)/MgO/phenol (P) ratios at various pH values. The results indicated that the pH value, nature of pH regulator and synthesis parameters, including the F/P ratio and MgO content, all influence the rate of cure. The pH value played an important role in affecting both the cure rate and cure time. The cure rate was fast when pH was below 7.5. The cure time decreased as the pH value decreased at all F/MgO/P ratios. The MgO/P ratio had a definite influence on the cure rate, the cure time decreased with the increase of MgO/P molar ratio, and the F/P ratio had no significant influence on the cure rate. Differential scanning calorimetry (DSC) results showed that MgO catalyzed PF resin can cure at a low temperature.  相似文献   

12.
Development and characterization of a wood adhesive using bagasse lignin   总被引:8,自引:0,他引:8  
Bagasse is spent fiber left after extraction of sugar. It is mainly used as a fuel to concentrate sugarcane juice. In the present work, the possibility of preparing wood adhesives from bagasse has been explored. The parameters for the preparation of a lignin phenol formaldehyde (LPF) adhesive, (lignin concentration, formaldehyde to phenol molar ratio, catalyst concentration, reaction time and reaction temperature) have been optimized. It was found that up to 50% of phenol can be substituted by bagasse lignin to give LPF wood adhesive having better bonding strength in comparison to a control phenol formaldehyde (CPF) wood adhesive. Prepared resins were characterized using IR, DSC and TGA. IR spectra of LPF resin showed structural similarity with CPF resin. Thermal stability of LPF resin was found to be lower as compared to CPF resin. DSC studies reveal a lower curing temperature for LPF adhesive in comparison to CPF adhesive. A shelf-life study reveals that LPF exhibits consistent behavior as compared to CPF in respect to adhesive strength.  相似文献   

13.
In this study, alkaline lignin (AL), dealkaline lignin (DAL), and lignin sulfonate (SL) were liquefied in phenol with sulfuric acid (H2SO4) or hydrochloric acid (HCl) as the catalyst. The phenol‐liquefied lignins were used as raw materials to prepare resol‐type phenol‐formaldehyde resins (PF) by reacting with formalin under alkaline conditions. The results show that phenol‐liquefied lignin‐based PF resins had shorter gel time at 135°C and had lower exothermic peak temperature during DSC heat‐scanning than that of normal PF resin. The thermo‐degradation of cured phenol‐liquefied lignin‐based PF resins was divided into four temperature regions, similar to the normal PF resin. When phenol‐liquefied lignin‐based PF resins were used for manufacturing plywood, most of them had the dry, warm water soaked, and repetitive boiling water soaked bonding strength fitting in the request of CNS 1349 standard for Type 1 plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The synthesis of lignin‐phenol‐formaldehyde (LPF) was studied to determine its optimum operating conditions. The lignin proposed as phenol substitute has been the softwood ammonium lignosulfonate. The resin synthesis was optimized by varying the methylolated lignosulfonate content, 18–52%; the sodium hydroxide to phenol‐modified lignosulfonate molar ratio, 0.3–0.94; and the formaldehyde to phenol‐modified lignosulfonate molar ratio, 1.1–3.5. The parameters employed in the characterization of LPF resins were free phenol, free formaldehyde, gel time, alkaline number, viscosity, pH, solid content, and chemical structure changes. The properties of LPF resin comply with the requirements for its utilization in plywood manufacture. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 643–650, 2004  相似文献   

15.
The acid curing agent content and foaming temperature could be reduced by improving the resol reactivity. In this study, highly active and solid phenol?resorcinol?formaldehyde copolymer resins (PRFRs) with different resorcinol/phenol (R /P ) molar ratios and formaldehyde/(phenol + resorcinol) [F /(P + R )] molar ratios were synthesized through the copolymerization of resorcinol, formaldehyde, and phenol. Phenol?resorcinol?formaldehyde foams (PRFFs) were prepared with synthetic PRFRs. The results showed that PRFR‐2 exhibited higher reactivity, faster curing speed, and better thermal stability. In addition, the foam produced with the PRFR‐2 had improved mechanical and flame retardation properties and a compressive strength of 0.18 MPa, a flexural strength of 0.25 MPa, and a limited oxygen index (LOI) greater than 37%. The increased reactivity of the PRFRs correlated with the changing mechanical properties of PRFFs because of the effects of resorcinol and the molar ratio of formaldehyde to phenol and resorcinol. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44881.  相似文献   

16.
将甲醛溶液、多聚甲醛共同与苯酚反应,在NaOH碱性催化剂作用下,通过逐步共聚制备可发性甲阶酚醛树脂(PF),然后将可发性甲阶PF与环保型发泡剂、匀泡剂和自制复合酸固化剂混合制备了阻燃绝热PF泡沫塑料.通过对甲醛/苯酚配比(物质的量之比即F/P)进行单因素分析,重点研究了制得的PF泡沫塑料的泡孔结构、力学性能、绝热性能和阻燃性能,并通过锥形量热仪对PF泡沫塑料的燃烧性能进行了分析.结果表明,当F/P=2.0时,制得的PF泡沫塑料泡孔均匀致密,其孔径为268 μm,弯曲强度为0.24 MPa,压缩强度为0.39 MPa,热导率为0.046 W/(m·K),氧指数为54.3%,热释放速率为0.57 kW/m2,烟灰产率仅为9.6 m2/m2,峰值CO产量仅为1.8584 kg/kg.  相似文献   

17.
酚醛树脂固化动力学研究   总被引:3,自引:0,他引:3  
采用DSC方法探讨了酚醛物质的量比(F/P)为1.3、1.5、1.8的酚醛树脂的固化反应过程。在50~300℃温度范围内以不同升温速率(5、10、15、20℃/min)进行动态固化行为分析。运用Kissinger和Ozawa法进行了动力学研究,得到其固化反应活化能。结果表明:两种方法计算得到活化能的大小顺序是一致的。高物质的量比酚醛树脂在固化过程中具有的活化能比低物质的量比酚醛树脂的要低,这就意味着高物质的量比酚醛树脂固化时需要较少热量。因此,酚醛树脂的F/P物质的量比越高,固化反应的活化能就越低。随升温速率提高,该种树脂的起始固化温度Ti,峰顶固化温度Tp,终了固化温度Tf都有提高,同时固化时间tc缩短。  相似文献   

18.
Statistical parameters for the phenol (P)-formaldehyde (F) condensation under acid conditions are derived in the frame of Flory-Stockmayer's theory. Phenol is assigned an average functionality f = 2.31 as proposed by Drumm and Le Blanc (1972). Results show that a molar ratio (FP) = 0.881 leads to gelation at full formaldehyde conversion. Free phenol and number and weight average molecular weights are calculated, showing a significant dependence on the final formaldehyde conversion and the selected molar ratio (F/P). A good agreement between theoretical predictions and experimental results is obtained.  相似文献   

19.
贺燕  王海洋  左继成 《化学与粘合》2014,36(6):403-406,462
在P/F=1∶1.6情况下,分别以氢氧化钠、氢氧化钡、氨水、氧化锌为催化剂,催化苯酚与多聚甲醛合成高固含量酚醛树脂。研究了催化剂用量和种类对树脂黏度、固含量、游离酚、游离醛,以及固化后树脂力学性能的影响。结果表明:浸渍和胶合用酚醛树脂,以氢氧化钠制备的酚醛树脂的综合性能最优;氢氧化钠用量为3.5%时,树脂黏度为3.0Pa·s,固含量为86%,游离酚为4.0%,游离醛为0.4%且合成树脂预聚体的p H9.5,为弱碱性。  相似文献   

20.
Lignin-modified phenolic resin has been prepared by replacing phenol with lignin at different weight percentages. The resin synthesis was optimized by varying the molar ratio of phenol to formaldehyde, the concentration of sodium hydroxide, and the reaction time by measuring parameters such as the gelation time, flow time, solids content, pH, and specific gravity. The thermal stability of lignin-modified phenolic resin was studied by DSC, TGA, and isothermal analysis, and it was found that lignin-modified phenolic resin is thermally more stable than pure phenolic resin. The adhesive strength of lignin-modified phenolic resin was determined by the lap-shear method, which showed that the lignin-modified resin retains 78% of the adhesive strength for wood-wood systems and 86% of the adhesive strength for Al-Al systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号