首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To prepare silicon oxide (SiOx)‐deposited poly(ethylene terephthalate) films with high oxygen gas barrier capability, SiOx deposition by plasma polymerization has been investigated from the viewpoint of chemical composition. Tetramethoxysilane (TMOS) is suitable as a starting material for the synthesis of the SiOx films. The SiOx deposition under self‐bias, where the etching action occurs around an electrode surface, is effective in eliminating carbonaceous compounds from the deposited SiOx films. There is no difference in the chemical composition between the SiOx films deposited under self‐bias and under no self‐bias. The SiOx films are composed of a main component of Si O Si networks and a minor component of carbonized carbons. The SiOx films deposited under no self‐bias from the TMOS/O2 mixture show good oxygen gas barrier capability, but the SiOx films deposited under the self‐bias show poor capability. The minimum oxygen permeation rate for poly(ethylene terephthalate) films deposited SiOx film is 0.10 cm3 m−2 day−1 atm−1, which corresponds to an oxygen permeability coefficient of 1.4 × 10−17 cm3‐cm cm−2 s−1 cm−1 Hg for the SiOx film itself. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2091–2100, 1999  相似文献   

2.
Intermediate temperature solid oxide fuel cells (IT‐SOFCs) were fabricated depositing proton conducting BaCe0.9Y0.1O3–x (BCY10) thick films on cermet substrates made of nickel oxide–yttrium doped barium cerate (NiO–BCY10) using electrophoretic deposition (EPD) technique. The influence of the EPD parameters on the microstructure and electrical properties of BCY10 thick films was investigated. Deposited BCY10 thick films together with green anode substrates were co‐sintered in a single heating treatment at 1,550 °C for 2 h to obtain dense electrolyte and suitably porous anodes. The half‐cells were characterised by field emission scanning electron microscopy (FE‐SEM) and by X‐ray diffraction (XRD) analysis. A composite cathode specifically developed for BCY electrolytes, made of La0.8Sr0.2Co0.8Fe0.2O3(LSCF, mixed oxygen‐ion/electronic conductor) and BaCe0.9Yb0.1O3–δ (10YbBC, mixed protonic/electronic conductor), was used. Fuel cells were prepared by slurry coating the composite cathode on the co‐sintered half‐cells. Fuel cell tests and electrochemical impedance spectroscopy (EIS) were performed in the 550–700 °C temperature range. A maximum power density of 296 mW cm–2 was achieved at 700 °C for electrolyte deposited at 60 V for 1 min.  相似文献   

3.
High efficiency multicrystalline solar cells must improve performance while replacing higher cost monocrystalline silicon with lower cost multicrystalline silicon. Composite silicon dioxide-titanium dioxide (SiO2?TiO2) films are deposited on a large area of 15.6×15.6 cm2 textured multicrystalline silicon solar cells to increase the incident light trapped within the device. This is being achieved through new cell device structures that improve light trapping and energy conversion capability. These new structures depend on passivated thick and thin layers of silicon dioxide and titanum dioxide grown via wet and dry thermal oxidation. By replacing dry oxidation with wet oxidation the temperatures process can be lowered from 1050°C to 850°C to reduce both cycle time and wafer damage.  相似文献   

4.
Silicon oxide (SiOx) film deposition on the surface of oriented poly(propylene) (OPP) films was done to form a new oxygen gas barrier material using plasma polymerization of the tetramethoxysilane (TMOS)/O2 mixture. The SiOx film deposition on OPP films never improved oxygen gas barrier properties. The inefficacy of the SiOx deposition was due to poor adhesion at the interface between the deposited SiOx and OPP films and also to the formation of cracks in the deposited SiOx film. If prior to the SiOx film deposition surface modification of OPP films was done by a combination of the argon plasma treatment and TMOS coupling treatment, this contributed effectively to strong adhesion leading to success in the SiOx deposition on the OPP film surface, and then the oxygen gas barrier ability was improved. The oxygen permeation rate through the SiOx‐deposited OPP film was decreased from 2230 to 37–52 cm3/m2/day/atm, which was comparable to that of poly(vinylidene chloride), 55 cm3/m2/day/atm at a film thickness of 11 μm. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2389–2397, 2000  相似文献   

5.
SiOx films were deposited from a mixture of tetramethoxysilane (TMOS) and oxygen on poly(ethylene 2,6‐naphthalate) film using ion‐assisted plasma polymerization technique (Method II) and conventional plasma polymerization technique (Method I), and were compared in chemical composition and gas barrier properties. Methods I and II were different in electrical circuit between electrodes (anode and cathode) and electric power supply. In Method I, the anode electrode was grounded, and the cathode electrode was coupled to the discharge power supply. In Method II, the anode electrode was connected with the discharge power supply, and the cathode electrode was grounded. There was not large difference in SiOx deposition rate between the plasma polymerizations by Methods I and II. Plasma polymers deposited from TMOS/O2 mixtures by Method II possessed smaller C/Si and O/Si atomic ratios than those deposited by Method I and showed advantage in gas barrier properties. The oxygen and water vapor permeation rates were 0.08–0.13 cm3 m?2 day?1 atm?1 at 30°C at 90% RH and 0.244–0.276 g m?2 day?1 at 40°C at 90% RH, respectively. From these results, it can be concluded that the ion‐assisted plasma polymerization is a useful technique for deposition of gas barrier SiOx thin films. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 915–925, 2007  相似文献   

6.
Microporous polyethylene (PE) hollow fiber membrane with a porosity of 43% and N2 permeation of 4.96 cm3 (STP)/cm2 s cmHg was prepared by melt‐spinning and cold‐stretching method. It was found that PE with a density higher than 0.96 g/cm3 should be used for the preparation of microporous PE hollow fiber membranes. By increasing the spin–draw ratio, both the porosity and the N2 permeation of the hollow fiber membranes increased. Annealing the nascent hollow fiber at 115°C for 2 h was suitable for attaining membranes with good performance. By straining the hollow fiber to higher extensions, the amount and size of the micropores in the hollow fiber wall increased, and the N2 permeation of the membranes increased accordingly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 203–210, 2002; DOI 10.1002/app.10305  相似文献   

7.
《Ceramics International》2020,46(12):19935-19941
This paper discusses the formation of the TiOx-SiOx nano-composite phase during annealing of ultrathin titanium oxide films (~27 nm). The amorphous titanium oxide films are deposited on silicon substrates by sputtering. These films are important for high-k dielectrics and sensing applications. Annealing of these films at 750 °C in the O2 environment (for 15–60 min) resulted in the polycrystalline rutile phase. The films exhibit Raman peaks at 150 cm−1 (B1g), 435 cm−1 (Eg), and 615 cm−1 (A1g) confirming the rutile phase. The signature TO (1078 cm−1) and LO (1259 cm−1) infrared active vibrational modes of Si–O–Si bond confirms the presence of silicon-oxide. The X-ray photoelectron spectra of the TiOx films show multiple peaks corresponding to Ti metal (453.8 eV); Ti4+ state (458.3 eV (Ti 2p3/2) and 464 eV (Ti 2p1/2)); and Ti3+ state (456.4 eV (Ti 2p3/2) and 460.8 eV (Ti 2p1/2)). The O1s XPS spectra peaks at 530–533 eV can be attributed to Ti–O and Si–O bonds of the TiOx-SiOx nano-composite phase in the annealed films. The depth profiling XPS study shows that the top surface of the annealed film is mainly TiOx and the amount of SiOx increases with the depth.  相似文献   

8.
The hydrophilicity of oxygen plasma‐reated polymer surfaces decays with storing time in air environments. Because they are dense, highly crosslinked, and chemically stable, diamond‐like carbon (DLC) films and silicon oxide films (SiOx) were deposited on poly(ethylene terephthalate) by plasma‐enhanced chemical vapor deposition to restrict polymer surface dynamics. In this study, the effects of ultrathin films on surface dynamics of these polymers were investigated. The layers were deposited on substrates with thickness below 100 Å. The thickness of films was measured with a scanning analyzer ellipsometer, while ATR‐IR spectroscopy and Raman spectroscopy were performed to observe the chemical structure of the films. Films below 50 Å were also shown to be effective in stabilizing the plasma treated polymer surfaces. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1158–1164, 2000  相似文献   

9.
DIPAS (di-isopropylamino silane, H3Si[N(C3H7)2]) and O2 plasma were employed, using plasma-enhanced atomic layer deposition (PEALD), to deposit silicon oxide to function as the gate dielectric at low temperature, i.e., below 200 °C. The superior amorphous SiO2 thin films were deposited through the self-limiting reactions of atomic layer deposition with a deposition rate of 0.135 nm/cycle between 125 and 200 °C. PEALD-based SiO2 thin layer films were applied to amorphous oxide thin film transistors constructed from amorphous In-Ga-Zn-O (IGZO) oxide layers, which functioned as channel layers in the bottom-gated thin film transistor (TFT) structure, with the aim of fabricating transparent electronics. The SiO2 gate dielectric exhibited the highest TFT performance through the fabrication of heavily doped n-type Si substrates, with a saturation mobility of 16.42 cm2/V·s, threshold voltage of 2.95 V and large on/off current ratio of 3.69 × 108. Ultimately, the highly doped Si was combined with the ALD-based SiO2 gate dielectric layers, leading to a saturation mobility of 16.42 cm2/V·s, threshold voltage of 2.95 V, S-slope of 0.1944, and on/off current ratio of 3.69 × 108. Semi-transparent and transparent TFTs were fabricated and provided saturation mobilities of 22.18 and 24.29 cm2/V·s, threshold voltages of 4.18 and 2.17 V, S-slopes of 0.1944 and 0.1945, and on/off current ratios of 9.63 × 108 and 1.03 × 107, respectively.  相似文献   

10.
Piezoelectric properties of screen‐printed thick films, 0.01Pb(Mg1/2W1/2)O3–0.41Pb(Ni1/3Nb2/3)O3–0.35PbTiO3–0.23PbZrO3 + 0.1 wt% Y2O3 + 1.5 wt% ZnO (PMW–PNN–PT–PZ+YZ) on alumina (Al2O3) buffer layers deposited on Si substrates, were studied. To improve piezoelectric properties of and integrate the PMW–PNN–PT–PZ+YZ thick films, the Al2O3 buffer layers on silicon (Si) substrates were used. The Al2O3 buffer layer on the Si substrate suppressed the pyrochlore phases of the piezoelectric thick films and prevented interdiffusion of Si and Pb. The PMW–PNN–PT–PZ+YZ thick films with 900 nm thick Al2O3 buffer layer showed piezoelectric properties such as Pr = 32 μC/cm2, Ec = 25 kV/cm, and d33 = 32 pC/N. These significant piezoelectric properties of our screen‐printed PMW–PNN–PT–PZ+YZ thick films by the Al2O3 buffer layers can be applied to functional thick film in many micro‐electromechanical system (MEMS) applications such as micro actuators and sensors.  相似文献   

11.
Oxide-based near infrared (IR)-shielding coatings consisting of quarter‐wave stacks of oxygen-deficient tantalum oxide (Ta2O5?x) and silicon oxide (SiO2) multilayers and tin-doped indium oxide (In2O3) (ITO) films with the thicknesses of 200–600 nm can block the passage of IR-A (wavelength: 760–1400 nm) and IR-B (wavelength: 1400–3000 nm) radiation, respectively. In this study, the optical properties and microstructure of these oxide-based IR-shielding coatings were investigated. Transmission electron microscopy images indicated that amorphous Ta2O5?x/amorphous SiO2 multilayers were uniform and dense. ITO films were found to be highly crystalline and show carrier concentrations of up to 7.1 × 1020 cm?3, resulting in the strong IR-B optical absorption due to the plasma excitation of the free carriers. Oxide-based IR-shielding coatings with an ITO thickness of 420 nm were found to have near-IR shielding rates of >90% and an average visible light transmittance of >70%. The effects of IR on human keratinocytes were studied to evaluate the IR-induced photoaging in human skin. It was found that the downregulation of cellular proliferation and the enhancement of senescence-associated β-galactosidase activity induced by IR irradiation were significantly inhibited by oxide-based IR-shielding coatings. Thus, this study provides a facile method for the development of coatings for smart windows with high IR-shielding ability and high visible light transmittance.  相似文献   

12.
Two siloxane‐containing polyazomethines (PAZx) blended with SiO2 were investigated. SiO2 was obtained by sol‐gel method. The size of obtained SiO2 particles was about 408 nm as was confirmed by SEM technique. For the blended with silica polymers absorption UV‐vis properties were tested and compare with unblended ones. Electrical behavior of the two kind devices indium tin oxide (ITO)/PAZx : SiO2/Al and ITO/PEDOT : PSS/PAZx : SiO2/Al were tested by impedance spectroscopy in dark and under illumination (halogen lamp, 100 mW/cm2) in the frequency range of 1 Hz to 1 MHz with maximum voltage value of 20 mV. For all measured devices, Nyquist plots were presented. PEDOT : PSS interlayer improved electrical properties of made prototype polymeric solar cells. Blending PAZx with silica increased conductivity from 10–15 to 10–8 S/cm. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The construction and function of an apparatus for the determination of gas permeability through metallized polymer films is described. The test gases N2, O2, and CO2 penetrate under pressure differences from 100 torr to 20 bar through galvanized ABS films (acrylonitrile–butadiene–styrene copolymer). The metallic layers consists of chemically deposited Ni and a galvanic deposited Cu having a thickness of 2–30 μm. The quantity of permeated gases is determined by gas chromatography. The lowest permeability coefficient obtained is 10?17 (cm3 cm/cm2 sec torr). Leak effects can be measured quantitatively. The permeability of gas mixtures (i.e., air) can also be investigated. The apparatus allows the determination of extremely low permeability rates as well as those for conventional polymer systems.  相似文献   

14.
Lead‐free sodium bismuth titanate–aluminate bismuth [0.97(Na0.5Bi0.5)TiO3–0.03BiAlO3] solid‐solution films deposited on (100) Pt/TiO2/SiO2/Si substrates by a sol–gel process were pyrolyzed and annealed at different temperatures. The film annealed at 725°C with a pyrolysis temperature of 410°C exhibited the optimal electrical properties and excellent piezoelectric properties, with a remanent polarization 2Pr of 38 μC/cm2 and a leakage current density of 10?7–10?6 A/cm2 (E < 200 kV/cm). The values of the dielectric constant and dissipation factor at 100 kHz were 422 and 0.039, respectively. The piezoelectric coefficient of the film after poling at 168 kV/cm was found to be 57 pm/V, making the BNT‐BA films a viable lead‐free alternative to the lead‐based materials in such as biosensors and ultrasonic transducers.  相似文献   

15.
Thin films were deposited onto porous substrates by plasma polymerization using three kinds of organosilicic compounds, tetramethylsilane (TMS), hexamethyldisiloxane (M2), and octamethylcyclotetrasiloxane (D4). Those composite membranes showed different characteristics of gas permeability. When D4 was plasma-deposited onto a porous substrate, the composites membrane showed the highest oxygen permeability and the lowest oxygen-to-nitrogen permeability ratio. The composite membrane prepared from TMS showed the permeability characteristics opposite to the membrane obtained from D4. Infrared spectrum of the polymer from D4 resembles that of dimethylpolysiloxane. The plasma polymers from TMS and M2 showed different profiles in Si? O absorption bands in the range 1100–1000 cm-1 or in absorption bands of SiCH3 groups in the range 850–750 cm-1 from respective monomers. X-ray photoelectron spectroscopic observation indicated that all the plasma polymers contained more than two species of Si atom with different oxidation states. The greater part of Si atoms in plasma polymers took the same oxidation states in corresponding monomer. The gas permeability characteristics were closely related to the oxidation states of Si atom in the plasma polymers.  相似文献   

16.
Polythiophene (PT) was grafted on PE film using three reaction steps. First, PE films were brominated in the gas phase, yielding PE–Br; second, a substitution reaction of PE–Br with 2‐thiophene thiolate anion gave the thiophene‐functionalized PE; finally PT was grafted on the PE surface using chemical oxidative polymerization to give PE–PT. The polymerization was carried out in a suspension solution of anhydrous FeCl3 in CHCl3, yielding a reddish PE–PT film after dedoping with ethanol. ATR‐FTIR shows that the PT was grafted on PE in the 2,5‐position. SEM imaging revealed islands of PT on the PE film. AFM analysis found the thickness of islands to be in the range of 120–145 nm. The conductivity of these thin films was in the range of 10?6 S cm?1, a significant increase from the value of ~10?14 S cm?1 measured for PE film. © 2003 Society of Chemical Industry  相似文献   

17.
Thin starch coatings were deposited onto polyethylene (PE) film surfaces when PE films were immersed in 1% jet cooked starch solutions and the hot solutions were allowed to cool. Normal cornstarch, waxy cornstarch, high amylose cornstarch, and solvent‐extracted normal cornstarch (to remove native lipid) were used in these experiments. Amounts of adsorbed starch varied from about 0.03–0.05 mg per cm2 of PE, and these starch coatings imparted hydrophilic properties to film surfaces, as evidenced by contact angle measurements. Although starch could be removed by gently rubbing water‐wet PE surfaces, air‐dried coatings were more firmly attached, and did not separate from the PE surface when films were bent or flexed. SEM images of starch‐coated film surfaces showed that starch was deposited as particles less than 1 μm in diameter, and also as aggregates of these submicron particles. Despite the fact that some starch samples contained only very small amounts of amylose and native lipid, surface‐deposited starch in all experiments contained 90–100% amylose; and exhibited the same Vh X‐ray diffraction pattern, indicative of helical inclusion complex formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1781–1788, 2002; DOI 10.1002/app.10589  相似文献   

18.
The kinetics of nonisothermal crystallization of polypropylene (PP) containing nanoparticles of silicon dioxide (SiO2) were investigated by differential scanning calorimetry (DSC) at various cooling rates. Several different analysis methods were used to describe the process of nonisothermal crystallization. The results showed that the Ozawa equation and Mo's treatment could describe the nonisothermal crystallization of the composites very well. The nano‐SiO2 particles have a remarkable heterogeneous nucleation effect in the PP matrix. The rate of crystallization of PP/nano‐SiO2 is higher than that of pure PP. By using a method proposed by Kissinger, activation energies have been evaluated to be 262.1, 226.5, 249.5, and 250.1 kJ/mol for nonisothermal crystallization of pure PP and PP/nano‐SiO2 composites with various SiO2 loadings of 1, 3, and 5%, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1013–1019, 2004  相似文献   

19.
(K0.5Na0.5)NbO3 (KNN) thin films have been deposited onto Pt/Ti/SiO2/Si and quartz substrates by RF magnetron sputtering. The films were deposited at 400°C with the variation in oxygen mixing percentage (OMP) ratio from 0% to 100% and annealed at 700°C in oxygen atmosphere. The crystallinity of the films is found to be increased with increased OMP. Dielectric properties of the films were examined over the frequency range from 1 kHz to 1 MHz and the temperature range of 30°C to 400°C. The Curie temperature of the films was found to be in the range 369°C–373°C. For the first time, the split postdielectric resonator (SPDR) method was used to measure the microwave (10–20 GHz) dielectric properties of KNN thin films. The optical properties of as‐deposited and annealed KNN thin films were investigated by means of transmittance spectra. The optical bandgap is calculated by using the Tauc relation, and found to be in the range 4.34–4.40 eV and 4.29–4.37 eV for the as‐deposited and annealed films, respectively. The refractive index (n700nm) of the films found to be in the range 1.98–2.01 and 1.99–2.07 for as‐deposited and annealed films, respectively. The refractive index dispersion is analyzed by using Wemple–DiDomenico (W–D) single‐oscillator model. The effect of annealing and OMP on the refractive index, packing density and W–D parameters has been investigated. The average single oscillator energy (Eo) and dispersion energies (Ed) of the annealed KNN thin films are in the range of 6.17–7.16 eV and 18.77–22.19 eV, respectively. AC‐conductivity of the annealed films was analyzed by using double power law. Ag/KNN/Pt thin films followed the ohmic conduction (J ∝ Eα, where α ~1) and the low leakage current density obtained for the deposited at 100% O2 is 3.14 × 10?5 A/cm2 at 50 kV/cm.  相似文献   

20.
Polyimides (PIs) as high‐performance organic matrices are used in the preparation of PI composites because of their excellent mechanical, thermal and dielectric properties. The sol–gel method is a promising technique for preparing these PI composites due to the mild reaction conditions and the process being controllable. Although sulfonated polyimide (SPI) proton‐exchange membranes have attracted much attention recently, studies on preparing SPI‐based hybrid proton‐exchange membranes for fuel cells have been rare. A series of SPI? SiO2 hybrid proton‐exchange membranes were prepared from amino‐terminated SPI pre‐polymers, 3‐glycidoxypropyltrimethoxysilane (KH‐560) and tetraethylorthosilicate through a co‐hydrolysis and condensation process using an in situ sol–gel method. The reactive silane KH‐560 was used to react with amino‐terminated SPI to form silane‐capped SPI in order to improve the compatibility between the polymer matrix and the inorganic SiO2 phase. The microstructure and mechanical, thermal and proton conduction properties were studied in detail. The hybrid membranes were highly uniform without phase separation up to 30 wt% SiO2. The storage modulus and tensile strength of the hybrid membranes increased with increasing SiO2 content. The introduction of SiO2 improved the methanol resistance while retaining good proton conductivity. The hybrid membrane with 30 wt% SiO2 exhibited a proton conductivity of 10.57 mS cm?1 at 80 °C and methanol permeability of 2.3 × 10?6 cm2 s?1 possibly because the crosslinking structure and SiO2 phases formed in the hybrids could retain water and were helpful to proton transport. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号