首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An adaptive compensation control scheme using output feedback is designed and analysed for a class of non‐linear systems with state‐dependent non‐linearities in the presence of unknown actuator failures. For a linearly parameterized model of actuator failures with unknown failure values, time instants and pattern, a robust backstepping‐based adaptive non‐linear controller is employed to handle the system failure, parameter and dynamics uncertainties. Robust adaptive parameter update laws are derived to ensure closed‐loop signal boundedness and small tracking errors, in general, and asymptotic regulation, in particular. An application to controlling the angle of attack of a non‐linear hypersonic aircraft dynamic model in the presence of elevator segment failures is studied and simulation results show that the developed adaptive control scheme has desired actuator failure compensation performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Design of global robust adaptive output‐feedback dynamic compensators for stabilization and tracking of a class of systems that are globally diffeomorphic into systems in generalized output‐feedback canonical form is investigated. This form includes as special cases the standard output‐feedback canonical form and various other forms considered previously in the literature. Output‐dependent non‐linearities are allowed to enter both additively and multiplicatively. The system is allowed to contain unknown parameters multiplying output‐dependent non‐linearities and, also, unknown non‐linearities satisfying certain bounds. Under the assumption that a constant matrix can be found to achieve a certain property, it is shown that a reduced‐order observer and a backstepping controller can be designed to achieve practical stabilization of the tracking error. If this assumption is not satisfied, it is shown that the control objective can be achieved by introducing additional dynamics in the observer. Sufficient conditions under which asymptotic tracking and stabilization can be achieved are also given. This represents the first robust adaptive output‐feedback tracking results for this class of systems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a conceptually simple robustification approach for the adaptive control of a class of non‐linear systems with static and dynamic uncertainties. This approach generates a new class of robust adaptive non‐linear controllers and is based upon a combined application of the well‐known adaptive backstepping and recent non‐linear small‐gain techniques. The presented method is illustrated via a third‐ order chemical reactor with only temperature information, and under relaxed conditions. An adaptive output‐feedback stabilizer is obtained without resorting to any state observer. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
This note presents analysis and quantification of transient dynamics in Model Reference Adaptive Control (MRAC) with output feedback and observer‐like reference models. A practical design methodology for this class of systems was first introduced in 1 , 2 , where an output error feedback was added to the reference model dynamics. Here, this design is complemented with an analysis of the corresponding transients. Specifically, it is shown that employing observer‐like reference models in MRAC leads to a trade‐off between achieving fast transient dynamics and using large error feedback gains in the modified reference model. For clarity sake, only systems with matched uncertainties are analyzed, yet the reported results can be extended to a broader class of uncertainties by utilizing MRAC modifications for robustness 3 , 4 . The note ends with a summary of the derived results and a discussion on practical design guidelines for adaptive output feedback controllers with observer‐like reference models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses a new adaptive output tracking problem in the presence of uncertain plant dynamics and uncertain sensor failures. A new unified nominal state‐feedback control law is developed to deal with various sensor failures, which is directly constructed by state sensor outputs. Such a new state‐feedback compensation control law is able to ensure the desired plant‐model matching properties under different failure patterns. Based on the nominal compensation control design, a new adaptive compensation control scheme is proposed, which guarantees closed‐loop signal boundedness and asymptotic output tracking. The new adaptive compensation scheme not only expands the sensor failures types that the system could tolerate but also avoids some signal processing procedures that the traditional fault‐tolerant control techniques are forced to encounter. A complete stability analysis and a representative simulation study are conducted to evaluate the effectiveness of the proposed adaptive compensation control scheme.  相似文献   

6.
A direct adaptive non‐linear control framework for multivariable non‐linear uncertain systems with exogenous bounded disturbances is developed. The adaptive non‐linear controller addresses adaptive stabilization, disturbance rejection and adaptive tracking. The proposed framework is Lyapunov‐based and guarantees partial asymptotic stability of the closed‐loop system; that is, asymptotic stability with respect to part of the closed‐loop system states associated with the plant. In the case of bounded energy L2 disturbances the proposed approach guarantees a non‐expansivity constraint on the closed‐loop input–output map. Finally, several illustrative numerical examples are provided to demonstrate the efficacy of the proposed approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
This paper introduces the iterative feedback tuning (IFT) into a Youla parameterization scheme for fault‐tolerant control. By off‐line IFT‐experiments of tuning Youla parameters, the proposed algorithm deals with a number of conditional failures that are described by the dual Youla parameter. The main contribution of this paper is to show how Youla scheme‐based IFT can be constructed for multivariable linear time‐invariant systems. Particular attention is given to the issue of the structure of the Youla parameter (filter), in which both finite impulse response and infinite impulse response filters are presented and compared. As an illustration, the method is applied to a simulation model of a continuous stirred tank heater system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A parameter‐dependent Riccati equation approach is proposed to design and analyze the stability properties of an output feedback adaptive control law design. The adaptive controller is intended to augment an existing fixed‐gain observer‐based output feedback control law. Although the formulation is in the setting of model reference adaptive control, the realization of the adaptive controller does not require implementing the reference model. In this regard, the increased complexity of implementing the adaptive controller, above that of a fixed‐gain control law, is less than that of other methods. The error signals are shown to be uniformly ultimately bounded, and an estimate for the ultimate bound is provided. The issue of sensor noise is addressed by introducing an error filter. The control design process and the theoretical results are illustrated using a model for wing rock dynamics.  相似文献   

9.
This paper addresses the problem of designing a global, output error feedback based, adaptive learning control for robotic manipulators with revolute joints and uncertain dynamics. The reference signals to be tracked are assumed to be smooth and periodic with known period. By developing in Fourier series expansion the input reference signals of every joint, an adaptive, output error feedback, learning control is designed, which ‘learns’ the input reference signals by identifying their Fourier coefficients: global asymptotic and local exponential stability of the tracking error dynamics are obtained when the Fourier series expansion of each input reference signal is finite, while arbitrary small tracking errors are achieved otherwise. The resulting control is not model based and depends only on the period of the reference signals and on some constant bounds on the robot dynamics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A Lyapunov‐based inverse optimal adaptive control‐system design problem for non‐linear uncertain systems with exogenous ℒ︁2 disturbances is considered. Specifically, an inverse optimal adaptive non‐linear control framework is developed to explicitly characterize globally stabilizing disturbance rejection adaptive controllers that minimize a nonlinear‐nonquadratic performance functional for non‐linear cascade and block cascade systems with parametric uncertainty. It is shown that the adaptive Lyapunov function guaranteeing closed‐loop stability is a solution to the Hamilton–Jacobi–Isaacs equation for the controlled system and thus guarantees both optimality and robust stability. Additionally, the adaptive Lyapunov function is dissipative with respect to a weighted input–output energy supply rate guaranteeing closed‐loop disturbance rejection. For special integrand structures of the performance functionals considered, the proposed adaptive controllers additionally guarantee robustness to multiplicative input uncertainty. In the case of linear‐quadratic control it is shown that the operations of parameter estimation and controller design are coupled illustrating the breakdown of the certainty equivalence principle for the optimal adaptive control problem. Finally, the proposed framework is used to design adaptive controllers for jet engine compression systems with uncertain system dynamics. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
A direct hybrid adaptive control framework for non‐linear uncertain hybrid dynamical systems is developed. The proposed hybrid adaptive control framework is Lyapunov‐based and guarantees partial asymptotic stability of the closed‐loop hybrid system; that is, asymptotic stability with respect to part of the closed‐loop system states associated with the hybrid plant states. Furthermore, hybrid adaptive controllers guaranteeing attraction of the closed‐loop system plant states are also developed. Finally, two numerical examples are provided to demonstrate the efficacy of the proposed hybrid adaptive stabilization approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper the output tracking control problem for a class of non‐linear time delay systems with some unknown constant parameters is addressed. Such a problem is solved in the case that the non‐linear time‐delay system has full delay relative degree and stable internal dynamics. It is supposed moreover that the output and its time derivatives until n?1, where n is the length of the state vector (euclidean part), do not depend explicitly on the unknown parameters. This work is the first step towards the application of the methodologies of adaptive control for non‐linear delayless systems, based on tools of differential geometry, to non‐linear time‐delay systems too. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   

14.
A state‐feedback Lyapunov‐based design of direct model reference adaptive control is developed for a class of linear systems with input and state delays based only on lumped delays without so‐called distributed‐delay blocks. The design procedure is based on the concept of reference trajectory prediction, and on the formulation of an augmented error. We propose a controller parametrization that attempts to anticipate the future states. An appropriate Lyapunov–Krasovskii type functional is found for the design and the stability analysis. A simulation example illustrates the new controller. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an adaptive output feedback stabilization method based on neural networks (NNs) for nonlinear non‐minimum phase systems. The proposed controller comprises a linear, a neuro‐adaptive, and an adaptive robustifying parts. The NN is designed to approximate the matched uncertainties of the system. The inputs of the NN are the tapped delays of the system input–output signals. In addition, an appropriate reference signal is proposed to compensate the unmatched uncertainties inherent in the internal system dynamics. The adaptation laws for the NN weights and adaptive gains are obtained using Lyapunov's direct method. These adaptation laws employ a linear observer of system dynamics that is realizable. The ultimate boundedness of the error signals are analytically shown using Lyapunov's method. The effectiveness of the proposed scheme is shown by applying to a translation oscillator rotational actuator model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper develops a relative output‐feedback–based solution to the containment control of linear heterogeneous multiagent systems. A distributed optimal control protocol is presented for the followers to not only assure that their outputs fall into the convex hull of the leaders' output but also optimizes their transient performance. The proposed optimal solution is composed of a feedback part, depending of the followers' state, and a feed‐forward part, depending on the convex hull of the leaders' state. To comply with most real‐world applications, the feedback and feed‐forward states are assumed to be unavailable and are estimated using two distributed observers. That is, a distributed observer is designed to measure each agent's states using only its relative output measurements and the information that it receives by its neighbors. Another adaptive distributed observer is designed, which uses exchange of information between followers over a communication network to estimate the convex hull of the leaders' state. The proposed observer relaxes the restrictive requirement of having access to the complete knowledge of the leaders' dynamics by all the followers. An off‐policy reinforcement learning algorithm on an actor‐critic structure is next developed to solve the optimal containment control problem online, using relative output measurements and without requiring the leaders' dynamics. Finally, the theoretical results are verified by numerical simulations.  相似文献   

17.
We contribute with a linear time‐varying controller for the permanent magnet synchronous motor. We solve the open problem of speed‐tracking control by measuring only stator currents and the rotor angular positions, under parametric uncertainty. Integral action is used to compensate for the effects of the unknown load‐torque, and adaptation is employed to estimate the unknown parameters. In the case that parameters are known (except for the load), we show that the origin of the closed‐loop system is uniformly globally exponentially stable. For the case of unknown parameters, we prove uniform global asymptotic stability; hence, we establish parametric convergence. In contrast to other adaptive control schemes for electrical machines, we use a reduced‐order adaptive controller. Indeed, adaptation is used only for the electrical dynamics equations. Moreover, not surprisingly, the closed‐loop system has a structure well‐studied in adaptive‐control literature. Performance is illustrated in a numerical setting. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a robust adaptive output‐feedback dynamic surface control scheme is proposed for a class of single‐input single‐output nonlinear systems preceded by unknown hysteresis with the following features: (1) a hysteresis compensator is designed in the control signal to compensate the hysteresis nonlinearities with only the availability of the output of the control system; (2) by estimating the norm of the unknown parameter vector and the maximum value of the hysteresis density function, the number of the estimated parameters is reduced, which implies that the computational burden is greatly reduced; (3) by introducing the initializing technique, the initial conditions of the state observer and adaptive laws of unknown parameters can be properly chosen, and the arbitrarily small norm of the tracking error is achieved. It is proved that all the signals in the closed‐loop system are ultimately uniformly bounded and can be arbitrarily small. Simulation results show the validity of the proposed scheme.  相似文献   

19.
An adaptive output feedback control scheme is developed for a class of nonlinear systems with uncertain nonlinearities, which are bounded by both static and dynamic functions of the system output, and with actuator failures whose failure time instants, patterns and values are unknown, as motivated from an aircraft flight control application. An adaptive backstepping control law using dynamic bounding is constructed to deal with unknown actuator failures as well as system parameter and dynamics uncertainties to guarantee desired system performance. Complete stability and performance analysis and illustrative simulation results of an application to aircraft flight control are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper focuses on solving the adaptive optimal tracking control problem for discrete‐time linear systems with unknown system dynamics using output feedback. A Q‐learning‐based optimal adaptive control scheme is presented to learn the feedback and feedforward control parameters of the optimal tracking control law. The optimal feedback parameters are learned using the proposed output feedback Q‐learning Bellman equation, whereas the estimation of the optimal feedforward control parameters is achieved using an adaptive algorithm that guarantees convergence to zero of the tracking error. The proposed method has the advantage that it is not affected by the exploration noise bias problem and does not require a discounting factor, relieving the two bottlenecks in the past works in achieving stability guarantee and optimal asymptotic tracking. Furthermore, the proposed scheme employs the experience replay technique for data‐driven learning, which is data efficient and relaxes the persistence of excitation requirement in learning the feedback control parameters. It is shown that the learned feedback control parameters converge to the optimal solution of the Riccati equation and the feedforward control parameters converge to the solution of the Sylvester equation. Simulation studies on two practical systems have been carried out to show the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号