首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrids, which were composed of the amphiphilic diblock copolymer polystyrene‐b‐poly(2‐hydroxylethyl methacrylate) (PSt‐b‐PHEMA) and nickel, cobalt, or a nickel–cobalt alloy, were characterized with infrared absorption spectroscopy and ultraviolet–visible (UV–vis) absorption spectroscopy. UV–vis spectroscopy analysis showed that a redshift happened after the PSt‐b‐PHEMA/metal‐ion complexes were reduced by KBH4. The PSt‐b‐PHEMA/nickel–cobalt alloy hybrids had the biggest redshift [difference of the UV‐vis absorption wavelength between (PSt‐b‐PHEMA)/metal ion complex and (PSt‐b‐PHEMA)/metal hybrids (Δλm = 19.9 nm)]. In comparison with the PSt‐b‐PHEMA/nickel hybrids (Δλm = 3.5 nm) and PSt‐b‐PHEMA/cobalt hybrids (Δλm = 9.0 nm). The magnetic properties of PSt‐b‐PHEMA/metal were studied with vibrating sample magnetometry. The results of magnetic hysteresis loop studies showed that the obtained PSt‐b‐PHEMA/metal hybrids could be categorized as ferromagnetic materials. The results showed that the magnetic susceptibility decreased with increasing temperature in the range of 150–400 K and increased with increasing temperature above 400 K. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
A series of polystyrene‐b‐polybutadiene (PSt‐b‐PBd) block copolymers with various chain lengths and compositions were synthesized by sequential living anionic polymerization and then converted into the corresponding polystyrene‐b‐poly(ethylene‐co‐butene) (PSt‐b‐PEB) block copolymers through the selective hydrogenation of unsaturated polybutadiene segments. Noncatalytic hydrogenation was carried out with diimide as the hydrogen source. The microstructures of PSt‐b‐PBd and PSt‐b‐PEB were investigated with gel permeation chromatography, 1H‐NMR, 13C‐NMR, Fourier transform infrared, and differential scanning calorimetry. The results showed that the hydrogenation reaction was conducted successfully and that the chain length and molecular weight distribution were not altered by hydrogenation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2632–2638, 2006  相似文献   

3.
Enzymatic polymerization in a non‐natural environment is of interest as an environmentally friendly methodology as an alternative to the use of conventional chemical organometallic catalysts. Chemo‐enzymatic synthesis of the AB‐type diblock copolymer poly(2,2,2‐trichloroethyl 10‐hydroxydecanate)‐block‐polystyrene (PHD‐b‐PSt) was carried out by combining enzymatic self‐condensation polymerization (eSCP) and atom‐transfer radical polymerization (ATRP). Biocatalyst Novozyme 435 was successful in catalyzing the eSCP of a novel ω‐hydroxyester, i.e. 2,2,2‐trichloroethyl 10‐hydroxydecanate. The resulting ? CCl3‐terminated PHD initiated the ATRP of styrene, a ‘living’/controlled radical polymerization. The analysis of the hydrolysate from the copolymer proved the presence of a block copolymer structure. In addition, the well‐defined diblock copolymer PHD‐b‐PSt self‐assembled into nanoscale micelles in aqueous solution. The chemo‐enzymatic synthesis of diblock copolymer PHD‐b‐PSt was achieved by the combination of eSCP and ATRP. The structures and composition of the block copolymer were characterized by means of NMR, infrared and gel permeation chromatography measurements. Differential scanning calorimetry analysis showed that a microphase‐separation structure was formed in the copolymer, which was caused by the crystallization of the PHD segments. As investigated with atomic force microscopy and dynamic light scattering, these micelles had a mean diameter and a spherical shape. To our knowledge, this is the first example of a chemo‐enzymatic synthesis based on eSCP and ATRP. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
The combination of radical‐promoted cationic polymerization, atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of poly(cyclohexene oxide)‐block‐polystyrene (PCHO‐b‐PSt). Alkyne end‐functionalized poly(cyclohexene oxide) (PCHO‐alkyne) was prepared by radical‐promoted cationic polymerization of cyclohexene oxide monomer in the presence of 1,2‐diphenyl‐2‐(2‐propynyloxy)‐1‐ethanone (B‐alkyne) and an onium salt, namely 1‐ethoxy‐2‐methylpyridinium hexafluorophosphate, as the initiating system. The B‐alkyne compound was synthesized using benzoin photoinitiator and propargyl bromide. Well‐defined bromine‐terminated polystyrene (PSt‐Br) was prepared by ATRP using 2‐oxo‐1,2‐diphenylethyl‐2‐bromopropanoate as initiator. Subsequently, the bromine chain end of PSt‐Br was converted to an azide group to obtain PSt‐N3 by a simple nucleophilic substitution reaction. Then the coupling reaction between the azide end group in PSt‐N3 and PCHO‐alkyne was performed with Cu(I) catalysis in order to obtain the PCHO‐b‐PSt block copolymer. The structures of all polymers were determined. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
The synthesis and properties of crosslinked diblock copolymers for use as proton‐conducting membranes are presented. A polystyrene‐b‐poly(hydroxyl ethyl methacrylate) diblock copolymer at 56 : 44 wt % was sequentially synthesized via atom transfer radical polymerization. The poly(hydroxyl ethyl methacrylate) (PHEMA) block was thermally crosslinked by sulfosuccinic acid (SA) via the esterification reaction between  OH of PHEMA and  COOH of SA. Proton nuclear magnetic resonance and Fourier transfer infrared spectra revealed the successful synthesis of the diblock copolymer and the crosslinking reaction under the thermal condition of 120°C for 1 h. The ion‐exchange capacity continuously increased from 0.25 to 0.98 mequiv/g with increasing SA concentration because of the increasing number of charged groups in the membrane. However, the water uptake increased up to an SA concentration of 7.6 wt %, above which it decreased monotonically (maximum water uptake ∼ 27.6%). The membrane also exhibited a maximum proton conductivity of 0.045 S/cm at an SA concentration of 15.2 wt %. The maximum behavior of the water uptake and proton conductivity with respect to the SA concentration was considered to be due to a competitive effect between the increase of ionic sites and the crosslinking reaction according to the SA concentration. All the membranes were thermally quite stable at least up to 250°C, presumably because of the block‐copolymer‐based, crosslinked structure of the membranes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
Poly(n‐butyl methacrylate)‐b‐polystyrene‐b‐poly(n‐butyl methacrylate) (PBMA‐b‐PSt‐b‐PBMA) triblock copolymers were successfully synthesized by emulsion atom transfer radical polymerization (ATRP). Difunctional polystyrene (PSt) macroinitiators that contained alkyl chloride end‐groups were prepared by ATRP of styrene (St) with CCl4 as initiator and were used to initiate the ATRP of butyl methacrylate (BMA). The latter procedure was carried out at 85°C with CuCl/4,4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as catalyst and polyoxyethylene (23) lauryl ether (Brij35) as surfactant. Using this technique, triblock copolymers consisting of a PSt center block and PBMA terminal blocks were synthesized. The polymerization was nearly controlled, ATRP of St from those macroinitiators showed linear increases in the number average molecular weight (Mn) with conversion. The block copolymers were characterized with infrared (IR) spectroscopy, hydrogen‐1 nuclear magnetic resonance (1HNMR), and differential scanning calorimetry (DSC). The effects of the molecular weight of macroinitiators, concentration of macroinitiator, catalyst, emulsion, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP were also reported. POLYM. ENG. SCI., 45:1508–1514, 2005. © 2005 Society of Plastics Engineers  相似文献   

7.
Background: Radical polymerization is used widely to polymerize more than 70% of vinyl monomers in industry, but the control over molecular weight and end group of the resulting polymers is always a challenging task with this method. To prepare polymers with desired molecular weight and end groups, many controlled radical polymerization (CRP) ideas have been proposed over the last decade. Atom transfer radical polymerization (ATRP) is one of the successful CRP techniques. Using ATRP, there is no report on the synthesis of polystyrene‐block‐polyurethane‐block‐polystyrene (PSt‐b‐PU‐b‐PSt) tri‐block copolymers. Hence this paper describes the method of synthesizing these tri‐block copolymers. To accomplish this, first telechelic bromo‐terminated polyurethane was synthesized and used further to synthesize PSt‐b‐PU‐b‐PSt tri‐block copolymers using CuBr as a catalyst and N,N,N,N″,N″‐pentamethyldiethylenetriamine as a complexing agent. Results: The ‘living’ nature of the initiating system was confirmed by linear increase of number‐average molecular weight and conversion with time. A semi‐logarithmic kinetics plot shows that the concentration of propagating radical is steady. The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and differential scanning calorimetry show that the novel PSt‐b‐PU‐b‐PSt tri‐block copolymers were formed through the ATRP mechanism. Conclusion: For the first time, PSt‐b‐PU‐b‐PSt tri‐block copolymers were synthesized through ATRP. The advantage of this method is that the controlled incorporation of polystyrene block in polyurethane can be achieved by simply changing the polymerization time. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

9.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

10.
Polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (Pst‐b‐PDMS‐b‐PSt) triblock copolymers were synthesized by atom transfer radical polymerization (ATRP). Commercially available difunctional PDMS containing vinylsilyl terminal species was reacted with hydrogen bromide, resulting in the PDMS macroinitiators for the ATRP of styrene (St). The latter procedure was carried out at 130°C in a phenyl ether solution with CuCl and 4, 4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as the catalyzing system. By using this technique, triblock copolymers consisting of a PDMS center block and polystyrene terminal blocks were synthesized. The polymerization was controllable; ATRP of St from those macroinitiators showed linear increases in Mn with conversion. The block copolymers were characterized with IR and 1H‐NMR. The effects of molecular weight of macroinitiators, macroinitiator concentration, catalyst concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3764–3770, 2004  相似文献   

11.
The objective of these investigations was to increase the use temperature of novel star‐block polymers consisting of a crosslinked polydivinylbenzene (PDVB) core from which radiate multiple poly(isobutylene‐b‐polystyrene) (PIB‐b‐PSt) arms, abbreviated by PDVB(PIB‐b‐PSt)n. We achieved this objective by blending star‐blocks with poly(phenylene oxide) (PPO) that is miscible with PSt. Thus, various PPO/PDVB(PIB‐b‐PSt)n blends were prepared, and their thermal, mechanical, and processing properties were investigated. The hard‐phase glass‐transition temperature of the blends could be controlled by the amount (wt %) of PPO. The blends displayed superior retention of tensile strengths at high temperatures as compared to star blocks. The melt viscosities of blends with low weight percentages of PPO were lower than those of star blocks. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2866–2872, 2002  相似文献   

12.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

13.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

14.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

15.
Amphiphilic block comb‐shaped copolymers, poly[poly(ethylene oxide) methyl ether acrylate]‐block‐polystyrene [P(A‐MPEO)‐block‐PSt] with PSt as a handle, were successfully synthesized via a macromonomer technique. The reaction of MPEO with acryloyl chloride yielded a macromonomer, A‐MPEO. The macroinitiator PSt capped with the dithiobenzoate group (PSt‐SC(S)Ph) was prepared by reversible addition–fragmentation transfer (RAFT) polymerization of styrene in the presence of benzyl dithiobenzoate, and used as macroinitiator in the controlled radical block copolymerization of A‐MPEO at room temperature under 60Co irradiation. After the unreacted macromonomer A‐MPEO had been removed by washing with hot saturated saline water, block comb‐shaped copolymers were obtained. Their structure was characterized by 1H NMR spectroscopy and gel permeation chromatography. The phase transition and self‐assembling behaviour were investigated by atomic force microscope and differential scanning calorimetry. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
A polydimethylsiloxane‐block‐poly(methyl methacrylate) (PDMS‐b‐PMMA) diblock copolymer was synthesized by the atom transfer radical polymerization method and blended with a high‐molecular‐weight poly(vinylidene fluoride) (PVDF). In this A‐b‐B/C type of diblock copolymer/homopolymer system, semi‐crystallizable PVDF (C) and PMMA (B) block are miscible due to favorable intermolecular interactions. However, the A block (PDMS) is immiscible with PVDF and therefore generates nanostructured morphology via self‐assembly. Crystallization study reveals that both α and γ crystalline phases of PVDF are present in the blends with up to 30 wt% of PDMS‐b‐PMMA block copolymer. Adding 10 wt% of PVDF to PDMS‐b‐PMMA diblock copolymer leads to worm‐like micelle morphology of PDMS of 10 nm in diameter and tens of nanometers in length. Moreover, morphological results show that PDMS nanostructures are localized in the inter‐fibrillar region of PVDF with the addition of up to 20 wt% of the block copolymer. Increase of PVDF long period by 45% and decrease of degree of crystallization by 34% confirm the localization of PDMS in the PVDF inter‐fibrillar region. © 2018 Society of Chemical Industry  相似文献   

17.
Block copolymers of very hydrophilic poly(N‐hydroxyethyl acrylamide) (PHEAA) with polystyrene (PS) were successfully synthesized by sequential atom transfer radical polymerization of ethyl acrylate (EA) and styrene monomers and subsequent aminolysis of the acrylic block with ethanolamine. Quantitative aminolysis of poly(ethyl acrylate) (PEA) block yielded poly(N‐hydroxyethyl acrylamide)‐b‐polystyrene in well‐defined structures, as evidenced by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy techniques. Three copolymers with constant chain length of PHEAA (degree of polymerization: 80) and PS blocks with 21, 74, and 121 repeating units were prepared by this method. Among those, the block copolymer with 21 styrene repeating units showed excellent micellation behavior in water without phase inversion below 100°C, as inferred from dynamical light scattering, environmental scanning electron microscopy, and fluorescence measurements. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Nanostructure formation in thermosets can allow the design of materials with interesting properties. The aim of this work was to obtain a nanostructured epoxy system by self‐assembly of an amphiphilic diblock copolymer in an unreacted epoxy/amine mixture followed by curing of the matrix. The copolymer employed was polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA). The thermoset system, formed by a diglycidyl ether of bisphenol A‐type epoxy resin and diaminodiphenylmethane hardener, was chosen to ensure the miscibility of most of the PMMA block until matrix gelation. Transparent materials with microphase‐separated domains were obtained for copolymer contents lower than 40 wt%. In systems containing 20 and 30 wt% block copolymer, the PS block formed spherical micelles or worm‐like structures before curing, which were stabilized through curing by the more compatible PMMA block phase. Nanostructured thermoset systems were successfully synthesized for self‐assembled amphiphilic block copolymer–epoxy/amine mixtures for copolymer contents lower than 40 wt%. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The controlled/living radical polymerization of N‐phenyl maleimide (NPMI) was achieved using 2,2′‐azobisisobutyronitrile as the initiator and 2‐cyanopropyl‐2‐yl dithiobenzoate as the reversible addition‐fragmentation chain transfer agent at 75°C in dichloroethane/ethylene carbonate (60/40, w/w) mixed solvent. The block copolymers of polystyrene‐b‐polyNPMI and poly(n‐butyl methacrylate)‐b‐polyNPMI were successfully prepared by chain extension from dithiobenzoate‐terminated polystyrene and poly (n‐butyl methacrylate) to NPMI, respectively. The obtained NPMI‐based (co)polymers were characterized by gel permeation chromatography and 1H‐NMR spectroscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号