首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) were mixed with poly(styrene‐cop‐hydroxystyrene) (abbreviated as PHS) containing 15 mol % of hydroxystyrene separately in 2‐butanone to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. The three polymer blends were found to be miscible, because all the prepared films were transparent and there was a single glass transition temperature (Tg) for each composition of the polymers. Tg elevation (above the additivity rule) is observed in all the three PMMA/PHS blends mainly because of hydrogen bonding. If less effective hydrogen bonding based on the FTIR evidence is assumed to infer less exothermic mixing, sPMMA may not be miscible with PHS over a broader range of conditions as iPMMA and aPMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 431–440, 1999  相似文献   

2.
The miscibility behavior of ternary blends of poly (vinyl phenol) (PVPh)/poly (vinyl pyrrolidone) (PVP)/poly (ethyl methacrylate) (PEMA) was investigated mainly with calorimetry. PVPh is miscible with both PVP and PEMA on the basis of the single Tg observed over the entire composition range. FTIR was used to study the hydrogen bonding interaction between the hydroxyl group of PVPh and the carbonyl group of PVP and PEMA at various compositions. Furthermore, the addition of PVPh is able to enhance the miscibility of the immiscible PVP/PEMA and eventually transforms it into a miscible blend, especially when the ratio between PVP/PEMA is 3:1, probably because of favorable physical interaction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1205–1213, 2006  相似文献   

3.
Relaxation behaviors of isotactic, atactic, and syndiotactic poly(methyl methacrylate) (PMMA) monolayers at the air/water interface were investigated at three different temperatures. The monolayer characteristics of the three stereoisomers were studied in terms of surface pressure–area per molecule (π‐A) isotherm, area relaxation, and pressure relaxation. The results show that pressures at inflection points of π‐A isotherms of PMMA decrease with an increase in temperature. The collapse pressure also decreases as the temperature is elevated. It was shown likely for the first time that the relaxation process of PMMA stereoisomers could be described by a model considering the nucleation and growth mechanisms. The simulation parameters of area relaxation of the three stereoisomers at 30 mN/m are very similar, indicating similar mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
BACKGROUND: The nature of phase transitions and apparently irreversible phase homogenization upon heating in blends of biodegradable poly(L ‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were proven using differential scanning calorimetry, polarized optical microscopy, scanning electron microscopy and 1H NMR spectroscopy. The complex phase behaviour in this blend system is puzzling and is a matter of debate; this study attempts to clarify the true nature of the phase behaviour. RESULTS: A PMMA/PLLA blend is immiscible at ambient temperature but can become miscible upon heating to higher temperatures with an upper critical solution temperature (UCST) at 230 °C. The blends, upon rapid quenching from the UCST, can be frozen into a quasi‐miscible state. In this state, the interaction strength was determined to be χ12 = ? 0.15 to ? 0.19, indicating relatively weak interactions between the PLLA ester and PMMA acrylic carbonyl groups. CONCLUSION: The absence of chemical exchange reactions above the UCST and phase reversibility back to the original phase separation morphology, assisted by solvent re‐dissolution, in the heat‐homogenized PLLA/PMMA blend was shown. Verification of UCST behaviour, phase diagrams and solvent‐assisted phase reversibility were experimentally demonstrated in PMMA/PLLA blends. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
The results of the miscibility between the chemically similar polymers poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) published so far show inconsistent statements concerning miscibility. The problems may be due to differences in molecular weights, tacticity, and preparation methods of the polymers. This investigation was carried out by using either chloroform or tetrahydrofuran (THF) as solvent to prepare the blends, because to our knowledge, nobody has reported any tacticity effect of PMMA on the miscibility with PVAc. Therefore, in this article, different tactic PMMAs were used to mix with PVAc and their miscibility was studied calorimetrically. The results showed little effect of solvent and tacticity. PMMA and PVAc were determined to be almost completely immiscible because of the observation of two Tg's. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 35–39, 2004  相似文献   

6.
It can be concluded from the work of Schurer et al.10 that poly(vinyl chloride) (PVC) is more miscible with syndiotactic than with isotactic poly(methyl methacrylate) (PMMA). By choosing different molar masses for the various tactic forms of PMMA it is possible to obtain blends with PVC with similar phase behaviour, i.e. in all cases a cloud-point curve with a minimum in the vicinity of 190°C. In this way a more quantitative statement about the influence of the tacticity of PMMA on its miscibility with PVC can be made. One of the principal differences between syndiotactic or atactic PMMA and isotactic PMMA is the higher flexibility of the latter. Using Flory's equation of state theory it will be shown that the effect of this difference is large enough to explain the difference in phase behaviour observed. Heats of mixing of low molar mass analogues were also measured and found to be negative.  相似文献   

7.
The phase behaviour of blends of a liquid-crystalline polymer (LCP) and poly(methyl methacrylate) (PMMA), as well as the phase state of blends of PMMA and poly(vinyl acetate) (PVA) has been investigated using light scattering and phase-contrast optical microscopy. The blends of LCP and PMMA have been obtained by coagulation from ternary solutions. The cloud point curves were determined. It was established that both pairs demix upon heating, ie have an LCST. In the region of intermediate composition, the phase separation proceeds according to a spinodal mechanism; however for LCP/PMMA blends, the decomposition proceeds according to a non-linear regime from the very onset. In the region of small amounts of LCP, the phase separation follows a mechanism of nucleation and growth. For PMMA/PVA blends, the spinodal decomposition proceeds according to a linear regime, in spite of the molecular mobility that PVA chains develop at lower temperatures. Only after prolonged heat treatment does the process transit to a non-linear regime. The data show a similarity between the phase behaviour of blends of liquid-crystalline and of flexible amorphous polymers. The distinction consists of the absence of a linear regime of decomposition for LCP-PMMA blends. © 1999 Society of Chemical Industry  相似文献   

8.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The results of a Fourier transform infrared study of poly(vinyl phenol) (PVPh) blends containing a number of chemically and structurally dissimilar polymers are presented. These polymers include the polyesters poly(ε-caprolactone) and poly(?-propiolactone); poly(vinyl alkyl ethers) where the alkyl groups are methyl, ethyl and isobutyl respectively; poly(ethylene oxide) and poly(vinyl pyrrolidone). All of these PVPh blends, with the exception of that containing poly(vinyl isobutyl ether), exhibit infrared spectral features consistent with a significant degree of mixing. Intermolecular hydrogen bonding interactions involving the PVPh hydroxyl group and either the carbonyl or ether oxygen moieties of the other polymers in the blend are identified. The relative strengths of these intermolecular interactions are discussed together with ramifications pertinent to the overall subject of polymer miscibility.  相似文献   

10.
The development of polymer blends has become very important for the polymer industry because these blends have shown to be a successful and versatile alternative way to obtain a new polymer. In this study, binary blends formed by poly(methyl methacrylate) (PMMA) and poly(vinyl pyrrolidone) were prepared by solution casting and evaluated by solution and solid‐state NMR. Variations in the microstructure of PMMA were analyzed by 13C solution NMR. Solid‐state NMR promotes responses on physical interaction, homogeneity, and compatibility to use these blends to understand the behavior of the ternary blends. The NMR results led‐us to acquire information on the polymer blend microstructure and molecular dynamic behavior. From the NMR solution, it was possible to evaluate the microstructure of both polymer blend components; they were atactic. From the solid state, good compatibility between both polymer components was characterized. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 372–377, 2004  相似文献   

11.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMA) (designated iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(vinyl pyrrolidone) (PVP) primarily in chloroform to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PVP. The aPMMA/PVP and sPMMA/PVP blends were found to be miscible because all the prepared films showed composition-dependent glass-transition temperatures (Tg). The glass-transition temperatures of the aPMMA/PVP blends are equal to or lower than weight average and can be qualitatively described by the Gordon–Taylor equation. The glass-transition temperatures of the other miscible blends (i.e., sPMMA/PVP blends) are mostly higher than weight average and can be approximately fitted by the simplified Kwei equation. The iPMMA/PVP blends were found to be immiscible or partially miscible based on the observation of two glass-transition temperatures. The immiscibility is probably attributable to a stronger interaction among isotactic MMA segments because its ordination and molecular packing contribute to form a rigid domain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3190–3197, 2001  相似文献   

12.
The nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) blends were studied. Four compositions of the blends [PET 25/PMMA 75, PET 50/PMMA 50, PET 75/PMMA 25, and PET 90/PMMA 10 (w/w)] were melt‐blended for 1 h in a batch reactor at 275°C. Crystallization peaks of virgin PET and the four blends were obtained at cooling rates of 1°C, 2.5°C, 5°C, 10°C, 20°C, and 30°C/min, using a differential scanning calorimeter (DSC). A modified Avrami equation was used to analyze the nonisothermal data obtained. The Avrami parameters n, which denotes the nature of the crystal growth, and Zt, which represents the rate of crystallization, were evaluated for the four blends. The crystallization half‐life (t½) and maximum crystallization (tmax) times also were evaluated. The four blends and virgin polymers were characterized using a thermogravimetric analyzer (TGA), a wide‐angle X‐ray diffraction unit (WAXD), and a scanning electron microscope (SEM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3565–3571, 2006  相似文献   

13.
Molecular simulations of poly(vinyl phenol)/poly(vinyl methyl ether) (PVPh/PVME) blends were performed and their degree of miscibility evaluated as a preliminary step before orientation simulations. A minimum of three periodic boundary condition amorphous models was constructed and analysed in terms of solubility parameter, X-ray pattern, pair correlation function, hydrogen bond fraction and backbone conformation. The values obtained are consistent with miscibility of the systems, although it is suggested that the degree of mixing is not uniform for the different models.  相似文献   

14.
Isotactic, atactic, and syndiotactic poly(methyl methacrylate) (PMMA) were mixed with poly(vinyl phenol) (PVPh) separately in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. Isotactic PMMA was found to be more miscible with PVPh than atactic or syndiotactic PMMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1773–1780, 1997  相似文献   

15.
Blends of amorphous and crystalline polylactides (PDLA and PLLA) with poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) have been prepared. Thermal behaviour and miscibility of these blends along the entire composition interval were studied by differential scanning calorimetry (d.s.c.). The results were compared with those obtained by dynamic mechanical analysis (DMTA). Only one Tg was found in PDLA/PMA and PDLA/PMMA blends, indicating a high degree of miscibility in both systems. Nevertheless, the PDLA/PMMA blend presented enlargements of the Tg width at high PMMA contents. In this case, additional evidence of complete miscibility was obtained by studying the evolution of the enthalpic recovery peaks which appear after different thermal annealing treatments. When the polylactide used was semicrystalline (PLLA), once the thermal history of the blends had been destroyed, crystallization of PLLA was disturbed in both blends PLLA/PMMA and PLLA/PMA, but in a rather different fashion: in the first case crystallization was almost prevented while in the second one it was favoured. This behaviour was explained in terms of the effect of the higher stiffness as indicated by the value of Tg for PMMA compared to that for PMA.  相似文献   

16.
E.M. Woo  Chih-Pei Chiang 《Polymer》2004,45(25):8415-8424
New miscible blend systems comprised of poly(4-vinyl phenol) (PVPh) and a homologous series of polyesters of different CH2/CO ratios (from 4.5 to 7) was discovered. Miscibility has been confirmed using differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and scanning electron microscopy. The PVPh/polyesters blends investigated exhibited a single composition-dependent glass transition and homogeneous phase morphology, and they similarly exhibited a cusp in the Tg-composition relationships. This work further extended the range of aliphatic polyesters that are known to be miscible with PVPh. The Flory-Huggins interaction parameter (χ12) or energy density (B) obtained from analysis of melting point depression for PVPh/PEAz and PVPh/PHS blends are of negative values. More interestingly, the specific interactions in the PVPh/polyester blends change with the corresponding different structures in the polyester component. For the PVPh/PHS blend whose polyester constituent possesses a lower carbonyl density in the main chain (average CH2/CO ratio=7), the energy density B was found to be −1.17 cal cm−3. This value is significantly lower than those for either the PVPh/PEAz (CH2/CO=4.5) blend system (B=−7.72 cal cm−3). Miscibility, specific interactions, and peculiar Tg-composition relationships in the blends of PVPh with selected homologous polyesters are discussed.  相似文献   

17.
Fang Yang  Wantai Yang 《Polymer》2009,50(10):2328-518
Miscibility, crystallization kinetics, crystal structure, and microstructure of biodegradable poly(butylene succinate-co-butylene adipate) (PBSA)/poly(vinyl phenol) (PVPh) blends were studied by differential scanning calorimetry, optical microscopy, wide angle X-ray diffraction, and small angle X-ray scattering in detail in this work. PBSA and PVPh are miscible as evidenced by the single composition dependent glass transition temperature and the negative polymer-polymer interaction parameter. Isothermal crystallization kinetics of PBSA/PVPh blends was investigated and analyzed by the Avrami equation. The overall crystallization rates of PBSA decrease with increasing crystallization temperature and the PVPh content in the PBSA/PVPh blends; however, the crystallization mechanism of PBSA does not change in the blends. Furthermore, blending with PVPh does not modify the crystal structure of PBSA. The microstructural parameters, including the long period, thickness of crystalline phase and thickness of amorphous phase, all become larger with increasing the PVPh content, indicating that PVPh mainly resides in the interlamellar region of PBSA spherulites in the blends.  相似文献   

18.
The blend miscibility of poly(vinyl alcohol) and poly(methyl methacrylate) in N,N′‐dimethylformamide solution was investigated by viscosity, density, ultrasonic velocity, refractive index, and UV and fluorescence spectra studies. Differential scanning calorimetry and scanning electron microscopy were used to confirm the blend miscibility in the solid state. Blends were compatible when the concentration of poly(vinyl alcohol) was greater than 60 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2415–2421, 2006  相似文献   

19.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
A new miscible blend of all compositions comprising poly(4‐vinyl phenol) (PVPh) and poly(trimethylene terephthalate) (PTT) was discovered and reported. The blends exhibit a single composition‐dependent glass transition and homogeneous phase morphology, with no lower critical solution temperature (LCST) behavior upon heating to high temperatures. Interactions and spherulite growth kinetics in the blends were also investigated. The Flory–Huggins interaction parameter (χ12) and interaction energy density (B) obtained from analysis of melting point depression are negative (χ12 = ?0.74 and B = ?32.49 J cm?3), proving that the PVPh/PTT blends are miscible over a wide temperature range from ambient up to high temperatures in the melt state. FTIR studies showed evidence of hydrogen‐bonding interactions between the two polymers. The miscibility of PVPh with PTT also resulted in a reduction in spherulite growth rate of PTT in the miscible blend. The Lauritzen–Hoffman model was used to analyze the spherulite growth kinetics, which showed a lower fold‐surface free energy (σe) of the blends than that of the neat PTT. The decrease in the fold‐surface free energy has been attributed to disruption of the PTT lamellae exerted by PVPh in an intimately interacted miscible state. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号