首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inverse gas chromatography was used to measure Flory–Huggins interaction parameters (χ23) for five binary blends consisting of high‐density polyethylene (HDPE) and octene‐based linear low‐density polyethylene (LLDPE) with different compositions at four elevated temperatures. The branch content of the LLDPE used in each pair of the blends ranged from 2 to 87 branches per 1000 backbone carbons. To obtain solvent‐independent χ23, the data analysis approach recently proposed by Zhao and Choi (Polymer 2001, 42, 1075) was used. The results indicate that the higher the branch content of LLDPE, the higher the measured χ23, signifying that HDPE/LLDPE blends with low branch content LLDPEs are relatively more miscible than those with high branch contents. In particular, when the branch content of LLDPE is higher than 50 branches per 1000 backbone carbons, phase separation may occur. This result is in good agreement with other researchers' results obtained from different techniques. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1927–1931, 2004  相似文献   

2.
It is demonstrated that the catalyst system bis(pentamethylcyclopentadienyl)‐zirconium dichloride (Me5Cp)2ZrCl2–methylaluminoxane (MAO) is able to produce random copolymers of ethene and 1‐hexene. The 1‐hexene incorporation in the copolymers is extremely small. Even in the case of a molar ratio of [ethene] to [1‐hexene] of 1/20 in the monomer feed, only 1.4 mol % 1‐hexene are incorporated according to 13C nuclear magnetic resonance (NMR) spectra. Nevertheless, the physical properties of the random copolymers change significantly in this small range of 1‐hexene incorporation, from a high‐density polyethene to a linear low‐density polyethene. Thus, the melting temperature, the degree of crystallinity, the density and lamella thickness, and the long period of the alternating crystalline and amorphous regions decrease with increasing 1‐hexene content in the random copolymers. Blends of high‐density polyethene prepared with the system (Me5Cp)2ZrCl2–MAO and an elastomeric random copolymer of ethene and 1‐hexene are phase‐separated and show good compatibility, as demonstrated by transmission electron microscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 439–447, 1999  相似文献   

3.
Ethylene homopolymerization and ethylene/α‐olefin copolymerization were carried out using unbridged and 2‐alkyl substituted bis(indenyl)zirconium dichloride complexes such as (2‐MeInd)2ZrCl2 and (2‐BzInd)2ZrCl2. Various concentrations of 1‐hexene, 1‐dodecene, and 1‐octadecene were used in order to find the effect of chain length of α‐olefins on the copolymerization behavior. In ethylene homopolymerization, catalytic activity increased at higher polymerization temperature, and (2‐MeInd)2ZrCl2 showed higher activity than (2‐BzInd)2ZrCl2. The increase of catalytic activity with addition of comonomer (the synergistic effect) was not observed except in the case of ethylene/1‐hexene copolymerization at 40°C. The monomer reactivity ratios of ethylene increased with the decrease of polymerization temperature, while those of α‐olefin showed the reverse trend. The two catalysts showed similar copolymerization reactivity ratios. (2‐MeInd)2ZrCl2 produced the copolymer with higher Mw than (2‐BzInd)2ZrCl2. The melting temperature and the crystallinity decreased drastically with the increase of the α‐olefin content but Tm as a function of weight fraction of the α‐olefins showed similar decreasing behavior. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 928–937, 2000  相似文献   

4.
A series of nonbridged (cyclopentadienyl) (aryloxy)titanium(IV) complexes of the type, (η5‐Cp′)(OAr)TiCl2 [OAr = O‐2,4,6‐tBu3C6H2 and Cp′ = Me5C5 ( 1 ), Me4PhC5 ( 2 ), and 1,2‐Ph2‐4‐MeC5H2 ( 3 )], were prepared and used for the copolymerization of ethylene with α‐olefins (e.g., 1‐hexene, 1‐octene, and 1‐octadecene) in presence of AliBu3 and Ph3CB(C6F5)4 (TIBA/B). The effect of the catalyst structure, comonomer, and reaction conditions on the catalytic activity, comonomer incorporation, and molecular weight of the produced copolymers was examined. The substituents on the cyclopentadienyl group of the ligand in 1 – 3 play an important role in the catalytic activity and comonomer incorporation. The 1 /TIBA/B catalyst system exhibits the highest catalytic activity, while the 3 /TIBA/B catalyst system yields copolymers with the highest comonomer incorporation under the same conditions. The reactivity ratio product values are smaller than those by ordinary metallocene type, which indicates that the copolymerization of ethylene with 1‐hexene, 1‐octene, and 1‐octadecene by the 1–3/ TIBA/B catalyst systems does not proceed in a random manner. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Poly(3‐mesityl‐2‐hydroxypropyl methacrylate) (PMHPMA) was synthesized in a 1,4‐dioxane solution with 2,2′‐azobisisobutyronitrile as the initiator at 60°C. The homopolymer and its monomer were characterized with 1H‐ and 13C‐NMR, Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and elemental analysis techniques. According to size exclusion chromatography analysis, the number‐average molecular weight, weight‐average molecular weight, and polydispersity index of PMHPMA were 65,864 g/mol, 215,375 g/mol, and 3.275, respectively. According to thermogravimetric analysis, the carbonaceous residue value of PMHPMA was 14% at 500°C. The values of the specific retention volume, adsorption enthalpy, sorption enthalpy, sorption free energy, sorption entropy, partial molar free energy, partial molar heat of mixing, weight fraction activity coefficient of solute probes at infinite dilution (Ω), and Flory–Huggins interaction parameter (χ) were calculated for the interactions of PMHPMA with selected alcohols and alkanes by the inverse gas chromatography method at various temperatures. According to Ω and χ, selected alcohols and alkanes were nonsolvents for PMHPMA at 423–453 K. Also, the solubility parameter of PMHPMA (δ2) was found to be 24.24 and 26.33 (J/cm3)0.5 from the slope and intercept of (δ/RT) ? χ/V1 = (2δ2/RT1 ? δ/RT at 443 K, respectively [where δ1 is the solubility parameter of the probe, V1 is the molar volume of the solute, T is the column temperature (K), and R is the universal gas constant]. The glass‐transition temperature of PMHPMA was found to be 386 and 385 K by inverse gas chromatography and differential scanning calorimetry techniques, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 101–109, 2006  相似文献   

6.
Electrophilic alkylations of phenol/2,6‐dimethylphenol were performed with vinylidene‐terminated poly(1‐hexene)s using BF3·OEt2 catalyst. Vinylidene‐terminated poly(1‐hexene)s with Mn varying from 400 to 10000 were prepared by bulk polymerization of 1‐hexene at 50 to ?20 °C using Cp2ZrCl2/MAO catalysts. The phenol/2,6‐dimethylphenol‐terminated poly(1‐hexene)s was characterized by NMR (1H, 13C), UV, IR and vapor phase osmometer (VPO). The isomer distribution (ortho, para and ortho/para) was determined by 13P NMR using a phosphitylating reagent, namely 2‐chloro‐1,3,2‐dioxaphospholane. The number‐average degree of functionality (Fn) >0.9 with >95% para selectivity could be achieved using low‐molecular‐weight oligomers of poly(1‐hexene)s. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

8.
The characteristic features of LLDPE polymerization with ZN catalyst are the time drift effect during polymerization and the bending effect when trying to decrease density of the copolymer by adding more comonomer to the polymerization. The time drift in LLDPE polymerization is revealed by a constant decrease of comonomer incorporation during polymerization time. The bending is revealed by difficulties in lowering the density of LLDPE material below the density of 920 kg/m3. With increasing comonomer content during polymerization, the density does not decrease, but the soluble fraction increases. To try to observe if these phenomena are connected, two types of catalysts, SiO2 supported and precipitated MgCl2 ZN catalysts, were studied. A short time (10 min) and an extended time (60 min) copolymerization test series where the polymerizations were performed in the presence of a gradually increasing comonomer amount. Both catalysts show a strong bending when density is presented as a function of 1‐hexene both in 10‐ and 60‐min polymerization, indicating no connection between time drift and bending. The density, melting point, and crystallinity results all indicate that both catalysts are making similar copolymer material with identical chemical composition distribution. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The effects of branch content (BC) and comonomer type on the mechanical properties of metallocene linear low‐density polyethylene (m‐LLDPEs) were studied by means of a stress–strain experiment at room temperature. A total of 16 samples with different BCs and comonomer types were used. In addition, the effect of crosshead speed on the mechanical properties of m‐LLDPEs with different BCs was examined. The degree of crystallinity (Xt) of these copolymers was determined by differential scanning calorimetry. In addition, Ziegler–Natta linear low‐density polyethylenes (ZN‐LLDPEs) were also studied for comparison purposes. The increase in BC of m‐LLDPEs decreased Xt and the modulus. However, the ZN‐LLDPEs showed higher small‐strain properties but lower ultimate properties than the m‐LLDPEs with similar weight‐average molecular weights and BCs. In comparison with low‐BC resins, m‐LLDPEs with high BCs exhibited a stronger strain hardening during the stress–strain experiments. Strain hardening was modeled by a modified Avrami equation, and the order of the mechanically induced crystal growth was in the range of 1–2, which suggested athermal nucleation. The crosshead speed was varied in the range 10–500 mm/min. For low‐BC m‐LLDPEs, there existed a narrow crosshead speed window within which the maxima in modulus and ultimate properties were observed. The location of the maxima were independent of BC. The effect of the crosshead speed on the mechanical properties of the m‐LLDPEs was a strong function of BC. However, highly branched m‐LLDPE in this experiment showed a weak dependence on the crosshead speed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 5019–5033, 2006  相似文献   

10.
In this article, comonomer effects in copolymerization of ethylene and 1‐hexene with four MgCl2‐supported Ziegler‐Natta catalysts using either ethylene or 1‐hexene as the main monomer were investigated. It was found that no matter which monomer was used as the main monomer, the polymerization activity was significantly enhanced by introducing small amount of comonomer. In copolymerization with ethylene as the main monomer, the strength of comonomer effects was much stronger in active centers producing low‐molecular‐weight polymer than those producing high‐molecular‐weight polymer. In copolymerization with 1‐hexene as the main monomer, the number of active centers ([C*]/[Ti]) was determined, and the propagation rate constants (kp) were calculated. Deconvolution of the polymer molecular weight distribution into Flory components were made to study the active center distribution. Introduction of small amount of ethylene caused marked increase in the number of active centers and decrease in average chain propagation rate constant. Introducing internal electron donor in the catalyst enhanced not only the number of active centers but also the chain propagation rate constant. In copolymerization of 1‐hexene with small amount of ethylene, the internal donor weakened the comonomer effects to some extent and changed the distribution of comonomer effects among different types of active centers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41264.  相似文献   

11.
CO2 and CH4 equilibrium adsorption are predicted by Excess Gibbs energy models based on vacancy solution theory, for single and binary mixture on Multi‐Walled Carbon Nanotubes (MWCNTs) functioned by –NH2 group. The experimental data of single gas adsorption isotherms were obtained at moderate pressures and temperatures using the volumetric method in a static gaseous set up. Firstly, the equilibrium pressures related to the adsorbed amounts, for single gases, were correlated on Wilson and Flory–Huggins activity coefficient equations based on vacancy solution theory and the model parameters were determined by fitting the model on the experimental data. Secondly, the pure component parameters were implemented in extended Wilson and Flory–Huggins equations for CO2 and CH4 mixture to predict the gas–solid phase equilibria. The results showed fairly good agreement between the experiments and both Gibbs models. Finally, the studied models were compared with the popular model of Extended Langmuir. The results revealed more accurately and precisely prediction of Wilson and Flory–Huggins against Langmuir model for mixed gas of CO2 and CH4 on MWCNT–NH2. © 2011 Canadian Society for Chemical Engineering  相似文献   

12.
The effect of the branch content (BC) and composition distribution (CD) of linear low‐density polyethylene (LLDPE) on the thermal and mechanical properties of its blends with LDPE were studied. All blends and pure resins were conditioned in a Haake PolyDrive blender at 190°C and in the presence of adequate amounts of antioxidant. Two metallocene LLDPEs (m‐LLDPE) and one Ziegler–Natta (ZN) hexene LLDPE were melt blended with the same LDPE. The effect of the BC was investigated by blending two hexene m‐LLDPEs of similar weight‐average molecular weights and molecular weight distributions but different BCs with the same LDPE. The effect of the CD was studied by using a ZN and an m‐LLDPE with similar weight‐average molecular weights, BCs, and comonomer type. Low‐BC m‐LLDPE blends showed separate crystallization whereas cocrystallization was observed in the high‐BC m‐LLDPE‐rich blends. However, ZN‐LLDPE/LDPE blends showed separate crystallization together with a third population of cocrystals. The influence of the crystallization behavior was reflected in the mechanical properties. The BC influenced the modulus, ultimate tensile strength, and toughness. The addition of a small amount of LDPE to a low‐BC m‐LLDPE resulted in a major improvement in the toughness, whereas the results for the high‐BC pair followed the additivity rule. ZN‐LLDPE blends with LDPE blends were found to be more compatible and exhibited superior mechanical properties compared to m‐LLDPE counterparts with the same weight‐average molecular weight and BC. All mechanical properties of ZN‐LLDPE blends follow the linear rule of mixtures. However, the CD had a stronger influence on the mechanical properties in comparison to the BC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2488–2498, 2005  相似文献   

13.
Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts—silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane—were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene–1‐hexene Copolymer 1 and Copolymer 2, respectively. Fouling‐free copolymerization, catalyst kinetic stability and production of free‐flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self‐nucleation and annealing experiments, as well as by an extended X‐ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO‐pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co‐monomer effect—both by 1‐hexene—were common. Each copolymer demonstrated vinyl, vinylidene and trans‐vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction of the present work, is recommended. © 2013 Society of Chemical Industry  相似文献   

14.
Tandem catalysis offers a novel synthetic route to the production of linear low‐density polyethylene. This article reports the use of homogeneous tandem catalytic systems for the synthesis of ethylene/1‐octene copolymers from ethylene stock as the sole monomer. The reported catalytic systems involving a highly selective, bis(diphenylphosphino)cyclohexylamine/Cr(acac)3/methylaluminoxane (MAO) catalytic systems for the synthesis of 1‐hexene and 1‐octene, and a copolymerization metallocene catalyst, rac‐Et(Ind)2ZrCl2/MAO for the synthesis of ethylene/1‐octene copolymer. Analysis by means of DSC, GPC, and 13C‐NMR suggests that copolymers of 1‐hexene and ethylene and copolymers of 1‐octene and ethylene are produced with significant selectivity towards 1‐hexene and 1‐octene as comonomers incorporated into the polymer backbone respectively. We have demonstrated that, by the simple manipulation of the catalyst molar ratio and polymerization conditions, a series of branched polyethylenes with melting temperatures of 101.1–134.1°C and density of 0.922–0.950 g cm?3 can be efficiently produced. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The influences of branch content on the miscibility of octene LLDPE made by metal‐locene catalyst (m‐LLDPE) and by Ziegler‐Natta LLDPE (ZN‐LLDPE) in LDPE were investigated with rheological methods. Dynamic and steady shear measurements were carried out in a Rheometrics Mechanical Spectrometer 800. Here, m‐LLDPEs were used to isolate interaction of molecular parameters. Blends of octene m‐LLDPE and ZN‐LLDPE with LDPE were mixed at 190°C in the presence of an adequate amount of antioxidant. The miscibilities of blends were revealed by the dependence of their measured ηo, η′ and G′ on blend composition as well as on agreement with predictions of different emulsion models. Blends of m‐LLDPE with LDPE were found to be almost miscible in the LLDPE branching range 10–30 branches/1000 C. However, immiscibility was found to develop at lower LLDPE branch contents. For ZN‐LLDPE/LDPE systems, branch content plays a significant role especially at low branch contents. The comparison of m‐LLDPE and ZN‐LLDPE systems suggest the strong influence of branch distribution (uniform and random, respectively). Palierne, Bousmina, and Scholz models fitted the loss and storage moduli data well with a value of α/R in the range 103?104 N/m2. Polym. Eng. Sci. 44:660–672, 2004. © 2004 Society of Plastics Engineers.  相似文献   

16.
Crosslinked networks (NPPCS) and linear polymers (LPPCS) of poly (p‐chloro styrene) were synthesized by free‐radical polymerization of p‐chloro styrene. NPPCS networks were swollen in four different molecular weights of LPPCS solutions in toluene at three different concentrations. The equilibrium swelling results were evaluated by means of Flory‐Rehner theory to obtain network–linear polymer interaction parameter, χ′23 between NPPCS and LPPCS. It was concluded that the parameter χ′23 decreased with molecular weight but increased with concentration of LPPCS in outer solution. The solvent independent interaction parameter between NPPCS and PPCS was estimated as 0.7 by extrapolation of the values of χ′23 to zero value of the fraction ratio of solvent to linear polymer, ν13 inside the network. As well as, the binary interaction parameters, χ12 of NPPCS with benzene, ethyl benzene, n‐propyl benzene and isopropyl benzene were obtained by means of Flory‐Rehner theory at temperatures between 25 and 55°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Homogeneous copolymerization of styrene and 1‐hexene was carried out in toluene at room temperature using bisindenyl ethane zirconium dichloride/methylaluminoxane (MAO). The supported catalyst was prepared with immobilization of Et(Ind)2ZrCl2/MAO on silica (calcinated at 500°C) with premixed method. Heterogeneous copolymerization of styrene/1‐hexene with different mole ratios was carried out in the presence of supported catalyst system. The copolymers obtained from homogeneous and heterogeneous catalyst system were characterized by 1H NMR and 13C NMR. Composition of the resulting copolymers was determined by 1H NMR data. Analysis of 13C NMR spectra of obtained copolymers by homogeneous and heterogeneous catalyst systems present isotactic olefin‐enriched copolymers. Molecular weight and thermal behavior of resulting copolymers was investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4008–4014, 2007  相似文献   

18.
Polyethylene copolymers prepared using the metallocene catalyst rac‐Et[Ind]2ZrCl2 were fractionated by preparative Temperature Rising Elution Fractionation (p‐TREF) and characterized by 13C nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) to study the heterogeneity caused by experimental conditions. Two ethylene–1‐hexene copolymers with different 1‐hexene content and an ethylene–1‐octene copolymer all obtained using low (1.6 bar) ethylene pressure were compared with two ethylene–1‐hexene copolymers with different 1‐hexene content obtained at high ethylene pressure (7.0 bar). Samples obtained at low ethylene pressure and with low 1‐hexene concentration in the reactor presented narrow distributions in composition. Samples prepared with high comonomer concentration in the reactor or with high ethylene pressure showed an heterogeneous composition. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 155–163, 2002; DOI 10.1002/app.10284  相似文献   

19.
Inverse gas chromatography has been widely used to determine the Flory–Huggins parameter, χ, between a plasticizer and a polymer, or between two polymers. Many studies showed that interaction parameters may be probe dependent. In a recent study it was proposed that, when a specific interaction occurred between two polymers, the probes had less interaction with the polymers, leading to a lower solubility parameter for polymer blends than the volume average of the components. An equation was derived to relate the probe dependency to the deviation of solubility parameter of polymer mixtures. Here this approach is applied to plasticized poly(vinyl chloride) (PVC) and a copolymer, and to poly(vinylidene fluoride)–poly(ethyl methacrylate) blends. For a PVC and epoxidized oil system the relative deviation of specific retention volume showed two trends, with saturated hydrocarbons as one group, and polar and aromatic probes as another group. For the poly(vinylidene fluoride)/poly(ethyl methacrylate) system the plot of retention volume deviation versus solubility parameter of probes also showed separate trends for n‐alkanes, esters, and alcohols. But the plot of ?2?3RT23/V2) versus solubility parameter had better linearity for the systems studied. The slope of this plot was used as an indicator for miscibility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
The values of Mark–Houwink–Sakurada constants were determined for poly(α-methyl styrene) (PαMs) of high and low molecular weights in a variety of solvents by a new approach, which requires only polydisperse samples. The results are in accord with those reported in the literature. In addition, the present work reports the values of the Flory interaction parameter for PαMs in 13 solvents of distinct solvent power at various temperatures. Three refined methods pertaining to both polar and nonpolar solvents were applied to estimate the solubility parameter (δ2) of PαMs resulting in δ2 = 18.75 ± 0.15 (J/mL)1/2 at 30°C. Finally, the scatter data of the Huggins coefficient over a range of expansion factors varying from 0.7 to 2.6 seem to conform better to a newly proposed empirical equation than to the contemporary model after Imai. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号