首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the isothermal and nonisothermal cold crystallization of syndiotactic polystyrene (s‐PS) were characterized with differential scanning calorimetry. A Johnson–Mehl–Avrami analysis of the isothermal experiments indicated that the cold crystallization of s‐PS at a constant temperature followed a diffusion‐controlled growth mode with a decreasing nucleation rate. Furthermore, the slow nucleation rate was the controlling step of the entire kinetic process. For nonisothermal cold‐crystallization kinetics, we used a simple model based on a combination of the well‐known Avrami and Ozawa models. The analysis revealed that, unlike for melt crystallization, the Avrami and Ozawa exponents were not equal. The activation energies for the isothermal and nonisothermal cold crystallizations of s‐PS were 792.0 and 148.62 kJ mol?1, respectively, indicating that the smaller motion units in cold crystallization had a weaker temperature dependence than those in melt crystallization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3464–3470, 2003  相似文献   

2.
Nonisothermal cold‐ and melt‐crystallization of syndiotactic polystyrene (sPS) were carefully carried out by Perkin–Elmer Diamond differential scanning calorimetry, polarized optical microcopy (POM), and wide angle X‐ray diffraction. The experimental data subjected to the two types of processing were thoroughly analyzed on the basis of Avrami, Tobin, Ziabicki, and combination of Avrami and Ozawa models. Avrami, Tobin, and Ziabicki analyses indicate that nonisothermal cold‐crystallization (A) characterizes smaller Avami and Tobin exponent and larger Ziabicki kinetic crystallizability index G than those obtained from nonisothermal melt‐crystallization (B) possibly due to the existence of partially ordered structures in the quenched samples. Kissinger and the differential isoconversional method (DICM) of Friedman's were utilized to obtain effective energy barrier of A, in good agreement with that obtained by using Arrhenius equation to analyze the isothermal cold‐crystallization, indicating that Kissinger and Friedman equations can be applied to obtain activation energy from A of sPS. X‐ray diffraction analysis indicates that cold‐crystallization mainly produces α‐type crystal but for melt‐crystallization the contents of α‐type and β‐type crystals depend on the cooling rates. The POM also indicates the difference of end morphology of the sample between A and B. At the same time, the DICM of Friedman's was applied to analyze experimental data of B, which were divided into two groups with 20 K/min as the threshold, and it was found that the formation of β‐type crystal possesses larger absolute value of effective activation barrier than the formation of α‐type crystal. © 2006Wiley Periodicals, Inc. J Appl Polym Sci 103: 1311–1324, 2007  相似文献   

3.
Analysis of the isothermal, and nonisothermal crystallization kinetics of Nylon-11 is carried out using differential scanning calorimetry. The Avrami equation and that modified by Jeziorny can describe the primary stage of isothermal and nonisothermal crystallization of Nylon-11. In the isothermal crystallization process, the mechanism of spherulitic nucleation and growth are discussed; the lateral and folding surface free energies determined from the Lauritzen–Hoffman equation are ς = 10.68 erg/cm2 and ςe = 110.62 erg/cm2; and the work of chain folding q = 7.61 Kcal/mol. In the nonisothermal crystallization process, Ozawa analysis failed to describe the crystallization behavior of Nylon-11. Combining the Avrami and Ozawa equations, we obtain a new and convenient method to analyze the nonisothermal crystallization kinetics of Nylon-11; in the meantime, the activation energies are determined to be −394.56 and 328.37 KJ/mol in isothermal and nonisothermal crystallization process from the Arrhonius form and the Kissinger method. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2371–2380, 1998  相似文献   

4.
Subsequent melting behavior after isothermal crystallization at different temperatures from the isotropic melt and nonisothermal crystallization kinetics and morphology of partially melting sPB were carried out by differential scanning calorimetry (DSC), polarized light microscopy (POM), respectively. Triple melting‐endothermic peaks were observed for the polymer first isothermally crystallized at temperatures ranging from 141 to 149°C, respectively, and then followed by cooling at 10°C/min to 70°C. Comparing with the nonisothermal crystallization from the isotropic melt, the nonisothermal crystallization for the partially melting sPB characterized the increased onset crystallization temperature, and the sizes of spherulites became smaller and more uniform. The Tobin, Avrami, Ozawa, and the combination of Avrami and Ozawa equations were applied to describe the kinetics of the nonisothermal process. Both of the Tobin and the Avrami crystallization rate parameters (KT and KA, respectively) were found to increase with increase in the cooling rate. The parameter F(T) for the combination of Avrami and Ozawa equations increases with increasing relative crystallinity. The Ziabicki's kinetic crytallizability index GZ for the partially melting sPB was found to be 3.14. The effective energy barrier Δ? describing the nonisothermal crystallization of partially melting sPB was evaluated by the differential isoconversional method of Friedman and was found to increase with an increase in the relative crystallinity. At the same time, Hoffman‐Lauritzen parameters (U and Kg) are evaluated and analyzed from the nonisothermal crystallization data by the combination of isoconversional approach and Hoffman‐Lauritzen theory. The Kg value obtained from DSC technique was found to be in good agreement with that obtained from POM technique. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1479–1491, 2006  相似文献   

5.
Crystallization kinetics of MC nylon (PA6) and polyazomethine (PAM)/MC nylon (PAM/PA6) both have been isothermally and nonisothermally investigated by different scanning calorimetry (DSC). Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The Avrami equation and Mo's modified method can describe the primary stage of isothermal and nonisothermal crystallization of PA6 and PAM/PA6 composite, respectively. In the isothermal crystallization process, the values of the Avrami exponent are obtained, which range from 1.70 to 3.28, indicating an average contribution of simultaneous occurrence of various types of nucleation and growth of crystallization. The equilibrium melting point of PA6 is enhanced with the addition of a small amount of rigid rod polymer chains (PAM). In the nonisothermal crystallization process, we obtain a convenient method to analyze the nonisothermal crystallization kinetics of PA6 and PAM/PA6 composites by using Mo's method combined with the Avrami and Ozawa equations. In the meanwhile, the activation energies are determined to be ?306.62 and ?414.81 KJ/mol for PA6 and PAM/PA6 (5 wt %) composite in nonisothermal crystallization process from the Kissinger method. Analyzing the crystallization half‐time of isothermal and nonisothermal conditions, the over rate of crystallization is increased significantly in samples with a small content of PAM, which seems to result from the increased nucleation density due to the presence of PAM rigid rod chain polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2844–2855, 2004  相似文献   

6.
Nylon 10 12, a newly industrialized engineering plastic, shows a double‐melting phenomenon during melting. Partial melts were obtained when the sample was heated to the temperature between the two melting peaks. A differential scanning calorimeter was used to monitor the energies of the isothermal and nonisothermal crystallization from the partially melted samples. During isothermal crystallization, relative crystallinity develops with a time dependence described by the Avrami equation, with the exponent n = 1.0. For nonisothermal studies, kinetics treatments based on the Avrami and Ozawa equations are presented to describe the crystallization process. It was found that the two treatments can describe the nonisothermal crystallization from the partially melted samples. The derived Avrami and Ozawa exponents are all about 1.0, which means that the partially melted samples crystallize by one‐dimensional growth, which may cause thickening of the lamellae. We calculated the crystallization activation energies for isothermal and nonisothermal crystallization from the partially melted samples. It was found that the activation energy determined by the Kissinger method was not rational, which may be attributed to the free‐nucleation process for nonisothermal crystallization from partially melted samples. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1311–1319, 2003  相似文献   

7.
Isothermal and nonisothermal crystallization kinetics of even‐odd nylon 10 11 were investigated by differential scanning calorimetry (DSC). Equilibrium melting point was determined to be 195.20°C. Avarmi equation was adopted to describe isothermal and nonisothermal crystallization. A new relation suggested by Mo was used to analyze nonisothermal crystallization and gave a good result. The crystallization activation energies have been obtained to be ?583.75 and ?270.06 KJ/mol for isothermal and nonisothermal crystallization, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1637–1643, 2005  相似文献   

8.
The isothermal crystallization kinetics have been investigated with differential scanning calorimetry for high‐flow nylon 6, which was prepared with the mother salt of polyamidoamine dendrimers and p‐phthalic acid, an end‐capping agent, and ε‐caprolactam by in situ polymerization. The Avrami equation has been adopted to study the crystallization kinetics. In comparison with pure nylon 6, the high‐flow nylon 6 has a lower crystallization rate, which varies with the generation and content of polyamidoamine units in the nylon 6 matrix. The traditional analysis indicates that the values of the Avrami parameters calculated from the half‐time of crystallization might be more in agreement with the actual crystallization mechanism than the parameters determined from the Avrami plots. The Avrami exponents of the high‐flow nylon 6 range from 2.1 to 2.4, and this means that the crystallization of the high‐flow nylon 6 is a two‐dimensional growth process. The activation energies of the high‐flow nylon 6, which were determined by the Arrhenius method, range from ?293 to ?382 kJ/mol. The activation energies decrease with the increase in the generation of polyamidoamine units but increase with the increase in the content of polyamidoamine units in the nylon 6 matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The isothermal and nonisothermal crystallization kinetics of a semicrystalline copolyterephthalamide based on poly(decamethylene terephthalamide) (PA‐10T) was studied by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization process. The commonly used Avrami equation and the one modified by Jeziorny were used, respectively, to describe the primary stage of isothermal and nonisothermal crystallization. The Avrami exponent n was evaluated to be in the range of 2.36–2.67 for isothermal crystallization, and of 3.05–5.34 for nonisothermal crystallization. The Ozawa analysis failed to describe the nonisothermal crystallization behavior, whereas the Mo–Liu equation, a combination equation of Avrami and Ozawa formulas, successfully described the nonisothermal crystallization kinetics. In addition, the value of crystallization rate coefficient under nonisothermal crystallization conditions was calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 819–826, 2004  相似文献   

10.
Reliable isothermal crystallization kinetic studies can be achieved by differential scanning calorimetric techniques only under restricted conditions. In the case of isotactic polypropylene, our results indicate that those conditions are met in the range of 3°C below the isothermal crystallization temperature Tc. Experimentally, it is only in this range when the complete crystallization peak can be registered by the DSC and depicted in a thermogram. Just around this temperature interval, the Avrami exponent n = 3 for bulk crystallization, whereas for any other test the isothermal temperature Tit, nonisothermal conditions prevail and the Avrami exponent deviates from the expected value. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 970–978, 2004  相似文献   

11.
The isothermal and nonisothermal melt crystallization kinetics of a novel poly(aryl ether ketone ether ketone ketone) containing a meta‐phenyl linkage (PEKEKmK) were studied by differential scanning calorimetry. The Avrami equation was used to analyze the isothermal crystallization kinetics of PEKEKmK. The crystallization mechanism did not change within the crystallization temperature range, but the crystallization rate decreased with an increase in the crystallization temperature. The equilibrium melting point, T, was determined to be 327°C according to the Hoffman–Weeks equation. Moreover, the nonisothermal crystallization kinetics of PEKEKmK was also investigated by the Avrami equation as modified by Jeziorny. It was found that the nonisothermal crystallization behavior of PEKEKmK could be described well by this method at various cooling rates, although the parameters n and Zc did not have the same clear physical meaning as for isothermal crystallization kinetics. The thermal properties and crystallization characteristics of PEKEKmK were compared with those of all‐para PEKEKK(T) and PEKEKK(T/I) with a T/I ratio of 1. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4775–4779, 2006  相似文献   

12.
The isothermal and nonisothermal crystallization behavior of Nylon 12 was investigated using differential scanning calorimetry (DSC). An Avrami analysis was used to study the isothermal crystallization kinetics of Nylon 12, the Avrami exponent (n) determined and its relevance to crystal growth discussed and an activation energy for the process evaluated using an Arrhenius type expression. The Lauritzen and Hoffman analysis was used to examine the spherulitic growth process of the primary crystallization stage of Nylon 12. The surface‐free energy and work of chain folding were calculated using a procedure reported by Hoffmann and the work of chain folding per molecular fold (σ) and chain stiffness of Nylon 12 (q) was calculated and compared to values reported for Nylons 6,6 and 11. The Jeziorny modification of the Avrami analysis, Cazé and Chuah average Avrami parameter methods and Ozawa equation were used in an attempt to model the nonisothermal crystallization kinetics of Nylon 12. A combined Avrami and Ozawa treatment, described by Liu, was used to more accurately model the nonisothermal crystallization kinetics of Nylon 12. The activation energy for nonisothermal crystallization processes was determined using the Kissinger method for Nylon 12 and compared with values reported previously for Nylon 6,6 and Nylon 11. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Analyses of the effects of montmorillonite (clay) on the crystallinity and crystallization behavior of syndiotactic polystyrene (s‐PS) were investigated by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The dispersibility of the clay in s‐PS nanocomposites was studied by X‐ray and transmission electron microscopy (TEM). The clay was dispersed into the s‐PS matrix by melt blending on a scale of 1–2 nm or few tenths–100 nm, depending on the surfactant treatment. On adding clay, the crystallization behavior of the s‐PS tends to convert into the β‐crystal from the α‐crystal after being cold‐crystallized because the clay plays a vital role in facilitating the formation of the thermodynamically favored β‐form crystal when the s‐PS is cold‐ or melt‐crystallized. This phenomenon leads to a change in a conventional mechanism of molecular packing for the s‐PS. Evidently, the clay significantly affects the crystallinity and crystallization behavior of the s‐PS. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2492–2501, 2002  相似文献   

14.
1,2‐Syndiotactic polybutadiene was synthesized at ?30°C using the catalyst system CrCl2(dmpe)2‐MAO. The syndiotactic index of the butadiene sequences, expressed as a percentage of syndiotactic pentads [rrrr], was evaluated by 13C‐NMR measurements. WAXD and SAXS techniques were employed to characterize the crystalline structure of the polymer. The thermal behavior of the polybutadiene was investigated by differential scanning calorimetry. The isothermal crystallization kinetics were described by means of the Avrami equation, which suggested a three‐dimensional growth of crystalline units, developed by heterogeneous nucleation, followed by a secondary crystallization stage. Polybutadiene isothermally crystallizes from the melt according to regime II of crystallization described by Lauritzen–Hoffman secondary nucleation theory. Nonisothermal crystallization kinetics were elaborated using the Ziabicki and Avrami methods modified by Jeziorny. The equilibrium melting temperature was calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1680–1687, 2004  相似文献   

15.
The non‐isothermal crystallization behavior of cork–polymer composites (CPC) based on polypropylene (PP) matrix was studied. Using differential scanning calorimetry (DSC), the crystallization behavior of CPC with 15 wt % cork powder at different cooling rates (5, 10, 15, and 20 °C/min) was studied. The effect of a coupling agent based on maleic anhydride was also analyzed. A composite (PPg) containing polypropylene grafted maleic anhydride (PPgMA) and PP was prepared for comparison purposes. Crystallization kinetic behavior was studied by Avrami, Ozawa, Liu, and Kissinger methods. The Ozawa method fails to describe the behavior of these composites. Results show that cork powder surface acts as a nucleating agent during non‐isothermal crystallization, while the addition of PPgMA decreases the crystallization rate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44124.  相似文献   

16.
采用差示扫描量热(DSC)法对聚萘二甲酸乙二醇酯(PEN)的非等温冷结晶动力学进行研究;通过改变升温速率,讨论了PEN冷结晶起始温度与峰顶温度之间存在差值的原因;对比了两种不同的冷结晶起始点的确定方法对冷结晶动力学常数的影响。结果表明:以DSC曲线偏离基线作为PEN冷结晶的起始点,得到的表观Avrami指数很大;用基线延长线与DSC曲线的切线的交点作为冷结晶的起始点和结束点,得到的表观Avrami指数为2.55,且不随升温速率的变化而变化,与等温熔融热结晶方法得到的结果接近,具有相似的结晶生长方式。  相似文献   

17.
The isothermal cold crystallization kinetics of polylactide (PLA)/nucleating agents (CaCO3, TiO2, and BaSO4, content from 0.5–2.0 wt %) was investigated by differential scanning calorimetry in the temperature range of 120–124°C. With blending nucleating agents, the crystallinity of PLA had a maximum crystallinity of 14.9%. Crystallization rate decreased with increasing crystallization temperature in the researched content range. The crystallization rate followed the Avrami equation with the exponent n around 4.5. From Lauritzen–Hoffman equation, the nucleation parameter Kg was estimated. And from the value of Kg, regime II crystallization behavior can be concluded. Then the lateral and fold surface free energy were calculated from Kg. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 310–317, 2007  相似文献   

18.
In this work, the nonisothermal and isothermal cold crystallization behaviors of poly(l ‐lactide) (PLLA)/trisilanolisobutyl‐polyhedral oligomeric silsesquioxanes (tsib‐POSS) nanocomposites with low tsib‐POSS contents were fully investigated. For all the samples, the variations of heating rate and the tsib‐POSS loading may influence the nonisothermal cold crystallization of PLLA. During the nonisothermal crystallization kinetics study, the Ozawa equation failed to fit the nonisothermal crystallization process of PLLA, while the Tobin equation could fit it well. For the isothermal crystallization kinetics study, the crystallization rates of all the samples increased with increasing crystallization temperature. The cold crystallization activation energy of PLLA was increased with 1 wt % tsib‐POSS. Moreover, the addition of tsib‐POSS and the increment of tsib‐POSS loading could increase the crystallization rate of PLLA, indicating the nucleating agent effect of tsib‐POSS. However, the crystallization mechanism and crystal structure of PLLA remained unchanged in the nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43896.  相似文献   

19.
Studies on the isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) nucleated with anhydrous sodium acetate were carried out. The nucleated agent had succeeded in promoting greater rates of crystallization in PET. A study of the melting behavior of the samples revealed that the nucleating agents promoted formation of thinner lamellae. The equilibrium melting temperature (T) of samples was determined using linear and nonlinear Hoffman Weeks procedure. The nonlinear Hoffman Week's procedure was found to be inapplicable in the current study. The Lauritzen‐Hoffman secondary nucleation theory was applied to determine the nucleation parameter (Kg), fold surface energy (σe), and work of chain folding (q). σe and q decreased on addition of nucleating agent. The approximate and exact form of the Lauritzen Z‐test was used to determine the operating regime. The operating regime was found to be primarily regime II for the range of temperatures studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
The crystallization behavior and isothermal crystallization kinetics of neat poly(l ‐lactic acid) (PLLA) and PLLA blended with ionic liquid (IL), 1‐butyl‐3‐methylimidazolium dibutylphosphate, were researched by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WXRD). Similar to the non‐isothermal crystallization behavior of neat PLLA, when PLLA melt was cooled from 200 to 20°C at a cooling rate of 10°C min?1, no crystallization peak was detected yet with the incorporation of IL. However, the glass transition temperature and cold crystallization temperature of PLLA gradually decreased with the increase of IL content. It can be attributed to the significant plasticizing effect of IL, which improved the chain mobility and cold crystallization ability of PLLA. Isothermal crystallization kinetics was also analyzed by DSC and described by Avrami equation. For neat PLLA and IL/PLLA blends, the Avrami exponent n was almost in the range of 2.5–3.0. It is found that t1/2 reduced largely, and the crystallization rate constant k increased exponentially with the incorporation of IL. These results show that the IL could accelerate the overall crystallization rate of PLLA due to its plasticizing effect. In addition, the dependences of crystallization rate on crystallization temperature and IL content were discussed in detail according to the results obtained by DSC and POM measurements. It was verified by WXRD that the addition of IL could not change the crystal structure of PLLA matrix. All samples isothermally crystallized at 100°C formed the α‐form crystal. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41308.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号