首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graft copolymerization of methyl methacrylate (MMA) on viscose fibers (grade 1.5 × 51 mm; Nagda; grey staple; bright bleached) was studied under a photoactive condition with visible light using conventional Mohr's salt–potassium persulphate as the redox initiator. The mechanical properties of the grafted viscose fiber, such as tenacity, breaking extension, and initial modulus were studied. The effect of monomer–solvent combination on viscoelastic nature (elasticity work recovery and stress relaxation) of the grafted fibers have also been explained. The moisture regain characteristics of the grafted fibers were also studied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2585–2591, 1998  相似文献   

2.
This research work involves graft copolymerization of jute fibers with methyl methacrylate (MMA), initiated by cerric ions, and optimization of the grafting parameters as a function of different polymerization conditions. It was considered to produce a hydrophobic jute fiber with enhanced properties. To achieve this, the effects of monomer concentration and grafting percentage on FTIR spectra, mechanical properties, moisture regain, oil‐adsorption capacity, and surface morphology were investigated, and optimum percentage of MMA with reasonable properties was suggested. The results indicated that cerric ions initiated graft copolymerization of MMA onto jute with 30% of weight of monomers at optimum conditions of acid concentration and temperature. The FTIR studies proposed grafting of MMA onto jute at hydroxyl groups. The results showed that mechanical properties and moisture regain (%) of samples decrease with increasing of graft percentage. The most remarkable features of this investigation include reducing oil‐adsorption capacity with increasing of lipophilic monomer percentages after one limitation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Silk fibers from Bombyx mori silkworms were grafted using a novel grafting monomer, vinyltrimethoxysilane (VTMSi), with various grafting initiators. The effects of these grafting initiators were evaluated. It was possible to successfully copolymerize VTMSi within the silk fiber matrix without disturbing the fine structure of the fiber matrix, which was shown by FTIR analysis and refractive index measurements. The physical properties of VTMSi grafted silk were analyzed and compared to fibers grafted with conventional monomers such as methyl methacrylate, methacrylamide, and 2‐hydroxyethyl methacrylate. No trend in the tensile strength and elongation at break was observed when grafting silk fibers with VTMSi. Crease recovery in the wet state improved significantly, suggesting that this new grafting technique is important for the production of washable silk fabrics. The thermal stability of VTMSi grafted silk fibers was improved as shown by the shift of the endothermic peak for the thermal decomposition toward higher temperatures. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1764–1770, 2001  相似文献   

4.
针对现有GB/T 6503—2008测试纤维回潮率的缺陷,提出测试芳纶标准回潮率的改进方法:采用烘箱法先将纤维试样在烘箱中烘至恒重,然后将烘至恒重的试样在标准大气条件下调湿至平衡状态,最后将调湿平衡的试样在烘箱中烘至恒重,测试芳纶的标准回潮率。结果表明:该方法中起初的预烘干处理消除了芳纶表面的油剂等对测试有干扰的因素,测得的标准回潮率更准确,标准回潮率的相对标准偏差为0.64%,方法的重复性好。  相似文献   

5.
The role of persulfate-induced graft copolymerization of mixtures of acrylamide and methyl methacrylate at 50°C in modifying mechanical properties of jute fibers of different compositions was studied in a limited aqueous system following a pretreatment technique. Results obtained indicate that such a process admits a good scope for modification of mechanical properties of jute fiber depending on degree of grafting achieved and compositional variations of (1) the feed monomer mixture and (2) the multiconstituent jute itself, consequent to selective removal of lignin and hemicellulose to different extents from the fiber. Low to moderate removal of hemicellulose is more effective than a similar degree of removal of lignin from jute in rendering the fiber more amenable to vinyl grafting using the mixed monomer system without being adversely affected with respect to tensile properties. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1139–1147, 1998  相似文献   

6.
采用电晕和紫外线辐照,在涤纶织物表面引入含氧极性基团。通过亲水性能、抗静电性能、力学性能等测试,结果表明,处理后织物的亲水性能和抗静电性能显著提高,耐水洗性能优良。但电晕和臭氧气氛中紫外线辐照均使涤纶织物断裂强度略有下降。  相似文献   

7.
The graft copolymerization of styrene/methyl methacrylate (MMA) onto deproteinized natural rubber (DPNR) latex was carried out using ammonium peroxy disulfate (N2H8O8S2) as the initiator. The presence of the grafted polystyrene (PS) and polymethyl methacrylate (PMMA) on the rubber backbone was confirmed by FTIR spectroscopy. The effects of monomer concentrations on curing characteristics and mechanical properties were studied. It was found that the cure time and scorch time were increased with increasing monomer concentration whereas the torquemax–min value was slightly decreased. It was also noted that the increase in the monomer concentration resulted in stiffer rubber with increased modulus and reduced elongation at break.  相似文献   

8.
Spider dragline silk has a unique combination of desirable mechanical properties—low density, high tensile strength and large elongation until breaking—that makes it attractive from an engineering perspective [Nature 410 (2001) 541]. Nevertheless, this outstanding performance is threatened by the way mechanical properties are affected by a wet environment, particularly if the stress of these fibers can relax when exposed to moisture. Tests on spider dragline silk (Argiope trifasciata) performed by the authors have shown that when the fiber is clamped and exposed to a wet enough environment non-vanishing supercontraction forces develop. When the moisture is removed the residual stresses increase, and this effect has proven long lasting, as the fiber remains stressed for hours. In addition, the tensile properties of the fiber remain unaffected by the residual stresses build up after removing the moisture or after a wetting and drying cycle. These tests give support to the thesis that supercontraction helps to keep the spider webs tight and opens new applications for synthetic analogs.  相似文献   

9.
The graft copolymerization of methyl methacrylate (MMA) onto chemically modified tussa silk fibers in aqueous media using potassium peroxodisulfate-thiourea redox initiator system was studied at 60°C. The effects of time of reaction, concentrations of oxidant, thiourea (TU), monomer (M), amount of silk fibers on graft yield have been studied. The effects of reaction medium, acid concentration, and some inorganic salts and organic solvents on grafting have also been investigated. A significant increase in percent of grafting was observed with increasing monomer concentration to 65.86 · 10?2 mol · 1?1; a further increase of monomer concentration is associated with the decrease of graft yield. The graft yield increases with an increase of thiourea concentration up to 10 · 10?1 mol · 1?1, beyond which it decreases very significantly. A measurable increase of the graft yield was also observed with an increase of the oxidant concentration up to 0.08 mol · 1?1 beyond which the graft yield decreased. The graft yield was medium dependent. The reaction mechanism of the grafting process has been proposed and a rate expression has been derived on the basis of experimental findings. IR spectra of the grafted fiber and original fiber have been taken and their characteristic bands have been identified. The thermal behaviour of the original and grafted silk fibers has been studied by TGA and DTG analysis. Grafting has improved thermal stability as well as the light fastness of silk dyed with Rhodamine B.  相似文献   

10.
Because polymer‐grafted wool fibers had been reported to have better functional performance, a K2S2O8–NaHSO3 redox system was used as the initiator for the grafting copolymerization of butyl methacrylate (BMA) onto wool fibers. Grafted samples of wool‐g‐BMA with different grafting percentages (5.2–25.86) were obtained through variations in the monomer concentration in the reaction system. The evidence for grafting was provided by scanning electron microscopy and infrared spectroscopy. After the grafting, the moisture retention of the wool‐g‐BMA fibers decreased slightly. Optical measurements showed that the birefringence decreased, indicating a lower degree of molecular orientation of the wool‐g‐BMA fibers. The tensile strength increased as the grafting percentage increased. Beyond an 18–25% grafting percentage, the elongation at break decreased, and this indicated a reduction of the elastic deformation, which meant that the flexibility of the modified fibers may have deteriorated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3813–3817, 2004  相似文献   

11.
以甲苯为溶剂,过氧化二苯甲酰(BPO)为引发剂,采用甲基丙烯酸羟乙酯(HEMA)通过自由基聚合接枝氯化聚丙烯(CPP);考察了引发剂类型对接枝反应的影响;研究了反应时间、反应温度、BIN)用量、HEMA用量对接枝率及接枝CPP黏合性能的影响,并对接枝产物进行了傅里叶变换红外光谱分析。确定了较理想的工艺条件:反应温度为110℃.反应时间为5h,m(CPP)/m(HEMA)/m(BPO)为1.0:1.0:0.1。  相似文献   

12.
Sisal fiber (SF) surface modification was carried out by grafting with methyl methacrylate (MMA) using cerium and ammonium nitrate as initiator. The effects of reaction time, monomer, and initiator concentration on the grafting parameters were systematically investigated. The results showed that MMA was successfully grafted onto the sisal fiber surface. The PMMA‐grafted sisal fibers were melt blended with polypropylene (PP) and then injection molded. The PP/SF composites were characterized by means of thermal analysis, mechanical testing, wide‐angle X‐ray diffraction, and SEM examination. PMMA grafted onto the surface of SF enhanced the intermolecular interaction between the reinforcing SF and PP matrix, improved the dispersion of SF in the PP matrix, and promoted the formation of β‐crystalline PP. These enhanced the thermal stability and mechanical properties of PP/SF composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1055–1064, 2003  相似文献   

13.
Stress‐relaxation experiments on four varieties of Indian silk fiber show that stress relaxation is significantly greater in non‐Mulberry silks than in the Mulberry silk and that the differences among non‐Mulberry silk fibers are relatively small. All the fibers studied also exhibit inverse stress relaxation. It has been shown that the Maxwell–Wiechert model, with two Maxwell elements in parallel, can be used to analyze and explain both the stress‐relaxation and inverse stress‐relaxation behaviors. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1147–1154, 2001  相似文献   

14.
Silk fibers were graft-copolymerized with methacrylamide (MAA) and 2-hydroxyethyl methacrylate (HEMA) in aqueous media, using a chemical redox system as an initiator. High weight gains (300%) were obtained with both monomers, the weight gain being linearly related to the amount of monomer contained in the reaction system. The reaction efficiency attained 95–100%. The extent of homopolymerization was negligible for the MAA grafting system, while large amounts of poly-HEMA covered the surface of silk fibers beyond 70% weight gain. The fiber size increased linearly with the weight gain. The moisture content of MAA-grafted silk fibers was highly enhanced by grafting. The severe grafting conditions caused a partial degradation of the tensile properties of silk fibers, as well as of the degree of fiber whiteness. Following grafting, the breaking load slightly increased, while elongation at break and energy decreased. The decomposition temperature of grafted silk fibers shifted upwards. The Raman spectra of untreated silk fibers showed strong lines at 1667 (amide I), 1451, 1227 (amide III), 1172 and 1083 cm−1. Overlapping of the lines characteristic of both silk fibroin and grafted polymer was observed in the spectra of grafted silk samples. The vibrational mode of the amide III lines of silk fibroin was significantly modified by grafting. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
To improve their dyeing and colorfastness properties, degummed Bombyx mori silks were chemically modified by a grafting technique with either methyl methacrylate (MMA) monomer or methacrylamide (MAA) monomer. Both commercial synthetic dyes, that is, acid and basic dyes, and natural dyes extracted from turmeric, without and with potassium aluminum sulfate mordant, were used in this study. Percentage dye uptake increased with the presence of poly(methyl methacrylate) or polymethacrylamide in the silk fibroin structure regardless of the types of the dyestuffs. Furthermore, compared to the degummed silk, the colorfastness to washing of the MMA‐grafted and MAA‐grafted silks dyed with acid, basic, and curcumin dyestuffs were greatly improved. Colorfastness to both acid and basic perspirations with acid and basic dyestuffs was slightly improved, whereas perspiration fastness remained unchanged for curcumin dyeing without and with the presence of the mordant. Also, the low‐light resistances of the degummed and grafted silks dyed by curcumin dyestuff were notably improved by the MMA and MAA grafting technique. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:1169–1175, 2006  相似文献   

16.
In this article, we present a simple method for synthesizing antibacterial cellulose fibers that were modified with a cationic polymer and immobilized silver chloride (AgCl) particles. Relatively simple techniques of graft polymerization and onsite precipitation were used to fabricate the composites. Scanning electron microscopy images, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, and energy‐dispersive X‐ray spectroscopy confirmed the immobilization of the AgCl particles. The observed inhibition zone of the immobilized AgCl particle composites indicated that the biocidal silver ions were released from the composites in aqueous solution. Compared with cationic‐polymer‐grafted cellulose fibers or AgCl alone, the cationic polymer/AgCl composites showed excellent antibacterial activity against Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42092.  相似文献   

17.
Moisture crosslinking would be a good substitution to cure ethylene-vinyl acetate-glycidyl methacrylate rubber (EVM-GMA) due to the characteristics of low cost and environmental friendliness. Our previous study found amino silane grafted onto EVM-GMA with low degree due to the low epoxy group content in rubber matrix. Consequently, the moisture crosslinking density of rubber compound is low. So, it is necessary to find an effective method to improve the moisture crosslinking density of EVM-GMA. In this paper, EVM-GMA grafted with γ-aminopropyltriethoxysilane and maleic anhydride (EVM-GMA-g-APTES/MAH) composites were prepared by melt blending, and then the moisture crosslinking of composites was achieved in a 90°C water bath with the aid of catalyst dibutyltin dilaurate (DBTL). The grafting of MAH onto the EVM-GMA molecular chain and its reaction with amino silane were confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). Furthermore, the moisture crosslinking density of the samples before and after grafting MAH was compared. The results indicated that the moisture crosslinking density of the grafted MAH was higher than that of the unmodified rubber, thus achieving better overall mechanical properties. Therefore, grafting MAH was a feasible way to improve the moisture crosslinking density of EVM-GMA with the existence of silane.  相似文献   

18.
Poly(methyl methacrylate) (PMMA) was bonded on the surface of attapulgite (ATP) by using an ammonium persulfate amine redox initiation system via grafting from approach. ATP was modified with (3‐aminopropyl)triethoxysilane to anchor amine groups on the surface, and then the amine‐functionalized ATP was further treated with methacryloyl chloride and 4,4′‐azobis(4‐cyanovaleric acid) to give methacryl‐ and azo‐functionalized ATP, respectively. Subsequently, surface‐initiated graft polymerization of MMA in a soap‐free emulsion was performed to afford ATP/PMMA hybrids. Meanwhile, graft polymerizations on the surface of methacryl‐ and azo‐functionalized ATP were carried out for comparison. The grafting of PMMA on the surface of ATP was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and thermogravimetric analysis (TGA). The crystal structure of hybrids was characterized by X‐ray diffraction analysis. The morphology of hybrids was observed by scanning electron microscopy and transmission electron microscopy. The degree of grafting obtained from surface‐initiated graft polymerization in a soap‐free emulsion was found to be the greatest (29.4%) estimated from TGA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41062.  相似文献   

19.
H. Münstedt  T. Köppl  C. Triebel 《Polymer》2010,51(1):185-8313
In this paper it is shown that elastic properties of a poly(methyl methacrylate) melt in the linear range of deformation are more significantly influenced by the addition of silica nanoparticles than viscous ones. The effect is the strongest in the steady-state which is reached at several thousand seconds. That is the reason why the often used dynamic-mechanical experiments are not a very suitable method for investigations of that kind. Therefore, creep and creep-recovery tests were applied for the characterisation of the filled materials. The linear steady-state recoverable compliances following from the recovery experiments increase by a factor of 6 at the highest measured volume content of 2.1%. This finding is explained by the existence of long retardation times in the filled materials resulting from interactions between the fillers and matrix molecules attached to their surfaces which reduce their molecular mobility. Retardation spectra calculated from the recovery curves quantify these assumptions. The model is supported by the experimental finding that the recoverable compliance becomes smaller above a certain stress applied and approaches that of the matrix as such a behaviour could be explained by a detachment of the molecules from the particle surface. The paper demonstrates that investigations of elastic properties of nanoparticle filled polymers in the molten state at long experimental times are a very sensitive tool to get an insight into interactions between particles and macromolecules of such systems.  相似文献   

20.
In this study, we focused on the synthesis, characterization, and adsorption capacity testing of aminated glycidyl methacrylate grafted rice husk (RH‐g‐GMA–Am). Our goal was to obtain a high‐performance surface for the adsorption of various anions. Glycidyl methacrylate grafted rice husk (RH‐g‐GMA) was prepared by the graft copolymerization of glycidyl methacrylate with rice husk; the product was further subjected to an amination reaction. The surface properties, sorption characteristic functional groups, isotherm and kinetic studies, pore diffusion models, and effects of the temperature and pH on the material properties were studied under batch conditions. The IR spectroscopy results show additional surface functional groups for RH‐g‐GMA–Am. The adsorptions of and on RH‐g‐GMA–Am were found to follow pseudo‐second‐order kinetics; this indicated a possible dominant role played by chemisorption. The rate‐limiting step for mass transfer was found to be boundary layer diffusion. Furthermore, the sorption isotherms for and fit the Langmuir model. The amination of RH‐g‐GMA drastically increased the removal efficiency from 3 to 82% and from 6 to 93% for and , respectively. Moreover, RH‐g‐GMA–Am exhibited a better removal efficiency in the pH range of 4–6.5. Regeneration studies revealed that the surface of RH‐g‐GMA–Am could be regenerated repetitively by simple acid washing with an insignificant decrease in the active surface for consecutive adsorptions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号