首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(18):2863-2877
Bio-inorganic chitosan based spherical shaped beads were prepared by dispersing rod-shaped FeOOH nanoparticles into a chitosan matrix for the removal of pure As(III) and As(V) from aqueous media, such as drinking water. A homogeneous mixture of chitosan and ferric nitrate, ferric chloride was prepared respectively with or without oxalic acid. The mixture was added dropwise in to a NaOH bath, where iron salts reacted with NaOH to form FeOOH particles. The scanning electron microscopy (SEM) showed that rod shaped FeOOH particles were distributed homogenously in the chitosan matrix. Diffuse reflective UV-vis (DRUV) spectra revealed that hydrated iron oxide formed a complex with functional groups in chitosan. Adsorption of As(III) and As(V) on different iron salt based bead was found to be pH dependent. The bead prepared from iron nitrate showed better performance for arsenic removal from aqueous solution over the bead that was prepared using iron chloride salt. The bead prepared using chitosan and iron-FeOOH is known as a chitosan-iron oxyhydroxide (CFOH) bead. The CFOH beads were found to be more efficient in removing As(III) from the solution compared to As(V). The adsorption of As(III) and As(V) from aqueous solution on CFOH beads was studied under equilibrium conditions in the concentration range of 1 mg/L to 50 mg/L in the presence of 0.05 M NaNO3 at pH 6.5 and 298 K temperature. The maximum adsorption capacity of the CFOH bead was found to be 5.4 mg/g for As(V) and 7.2 mg/g for As(III) using the Langmuir equation. The presence of sulphate, phosphate, and silicate in aqueous solution had no effects on adsorption of either As(III) or As(V) on CFOH beads but decreased significantly at pH> 8.  相似文献   

2.
BACKGROUND: The risk of environmental pollution is aggravated by the increasing application of considerable amounts of rare earth elements in advanced materials. This paper reports the preparation of novel magnetic alginate–chitosan gel beads and their application for adsorption of lanthanum ions from aqueous solution. RESULTS: Stable magnetic alginate–chitosan gel beads with average diameter 0.85 ± 0.05 mm were prepared by loading iron oxide nanoparticles onto a combined alginate and chitosan absorbent. The performance of the prepared beads for the adsorption of lanthanum ions from aqueous solution was tested. It was found that various parameters, such as aqueous pH, contact time, metal ion concentration, ion strength and temperature, have an effect on the adsorption. Adsorption equilibrium was reached in 10 h and the maximum uptake capacity was 97.1 mg g?1. From the analysis of pH, FTIR and XPS data, it is proposed that lanthanum adsorption proceeds through mechanisms of cation exchange, electrostatic interaction and surface complexation, with the oxygen atoms the main binding sites. In addition, lanthanum ions could be selectively separated from coexisting base metal ions such as Pb (II), Cd (II), Co (II), Ni (II) and Cu (II) in the aqueous solution. CONCLUSION: The prepared magnetic alginate–chitosan gel beads exhibit high uptake capacity and selectivity for lanthanum sorption, and thus can be used for adsorptive recovery of lanthanum from aqueous solutions. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
The adsorption behavior of poly(ethylene terephthalate) (PET) fibers towards copper(II), cobalt(II), and iron(III) ions in aqueous solutions was studied by a batch equilibriation technique. Influence of treatment time, temperature, pH of the solution, and metal ion concentration on the adsorption were investigated. Adsorption values for metal ion intake followed the following order: Co(II) > Cu(II) > Fe(III). One hour of adsorption time was found sufficient to reach adsorption equilibrium for all the ions. The rate of adsorption was found to decrease with the increase in the temperature. Langmuir adsorption isoterm curves were found to be significant for all the ions studied. The heat of adsorption values were calculated as −5, −2.8, and −3.6 kcal/mol for Cu(II), Co(II), and Fe(III) ions, respectively. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1935–1939, 1998  相似文献   

4.
This study is concerned with the investigation of the adsorption properties of acrylic acid grafted poly(ethylene terephthalate) fibers by the use of Cu(II) ions in aqueous solutions. Influence of pH, graft yield, contact time, concentration of the ion, and reaction temperature on the amount of ion adsorbed upon reactive fiber were investigated. The time in which the adsorption reached to the equilibrium value was determined as 1 h. The adsorption isotherm of Cu(II) ion was found to be a Langmuir type and the heat of adsorption was calculated as ?10.1 kJ mol?1. It was observed that the adsorbed Cu(II) ion upon acrylic acid grafted poly(ethylene terephthalate) fibers could be recovered in acidic media. The fiber could also readsorb Cu(II) ions without losing its activity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1216–1220, 2003  相似文献   

5.
BACKGROUND: The recovery of neodymium from dilute solutions has become important because of its wide application in industry. This work reports the preparation of novel carboxymethyl chitosan adsorbents entrapped by silica (SiO2/CMCH) and their application for adsorption of neodymium(III) ions from aqueous solution. RESULTS: The effect of the CMCH content, equilibrium pH (pHe), contact time, initial concentrations of Nd(III) and temperature on the adsorption was investigated. The amount of Nd(III) adsorption increases with increasing pHe, which can be explained by the pH‐titration curve of CMCH. Temperature has a positive effect on Nd(III) adsorption, and the amount adsorbed is 53.04 mg g?1 dry adsorbent or 434.75 mg g?1 CMCH at 328 K. Adsorption kinetics and isotherm can be described by the pseudo‐second‐order model and Langmuir equation. Both complexation and ion exchange mechanisms are believed to play an important role in Nd(III) adsorption, and possible coordination between CMCH and Nd(III) is speculated. Complete desorption can be reached when the concentration of HCl is more than 0.1 mol L?1. CONCLUSION: A novel method was developed to prepare SiO2/CMCH adsorbents through a one‐step sol‐gel strategy. The prepared adsorbents were biocompatible and non‐toxic with a good adsorption ability for Nd(III), and could be used for adsorptive recovery of Nd(III) from aqueous solutions. © 2012 Society of Chemical Industry  相似文献   

6.
Porous chitosan–tripolyphosphate beads, prepared by the ionotropic crosslinking and freeze‐drying, were used for the adsorption of Cu(II) ion from aqueous solution. Batch studies, investigating bead adsorption capacity and adsorption isotherm for the Cu(II) ion, indicated that the Cu(II) ion adsorption equilibrium correlated well with Langmuir isotherm model. The maximum capacity for the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, deduced from the use of the Langmuir isotherm equation, was 208.3 mg/g. The kinetics data were analyzed by pseudo‐first, pseudo‐second order kinetic, and intraparticle diffusion models. The experimental data fitted the pseudo‐second order kinetic model well, indicating that chemical sorption is the rate‐limiting step. The negative Gibbs free energy of adsorption indicated a spontaneous adsorption, while the positive enthalpy change indicated an endothermic adsorption process. This study explored the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, and used SEM/EDS, TGA, and XRD to examine the properties of adsorbent. The use of porous chitosan–tripolyphosphate beads to adsorb Cu(II) ion produced better and faster results than were obtained for nonporous chitosan–tripolyphosphate beads. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
In this study, phenolated wood resin was used an adsorbent for the removal of Cr(III), Ni(II), Zn(II), Co(II) ions by adsorption from aqueous solution. The adsorption of metal ions from solution was carried at different contact times, concentrations and pHs at room temperature (25°C). For individual metal ion, the amount of metal ions adsorbed per unit weight of phenolated wood resin at equilibrium time increased with increasing concentration and pH. Also, when the amounts of metal ions adsorbed are compared to each other, it was seen that this increase was order of Cr(III) > Ni(II) > Zn(II) > Co(II). This increase was order of Cr(III) > Ni(II) > Co(II) > Zn(II) for commercial phenol–formaldehyde resin. Kinetic studies showed that the adsorption process obeyed the intraparticle diffusion model. It was also determined that adsorption isotherm followed Langmuir and Freundlich models. Adsorption isotherm obtained for commercial phenol–formaldehyde resin was consistent with Freundlich model well. Adsorption capacities from Langmuir isotherm for commercial phenol–formaldehyde resin were higher than those of phenolated wood resin, in the case of individual metal ions. Original adsorption isotherm demonstrated the monolayer coverage of the surface of phenolated wood resin. Adsorption kinetic followed the intraparticle diffusion model. The positive values of ΔG° determined using the equilibrium constants showed that the adsorption was not of spontaneous nature. It was seen that values of distribution coefficient (KD) decreasing with metal ion concentration in solution at equilibrium (Ce) indicated that the occupation of active surface sites of adsorbent increased with metal ions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2838–2846, 2006  相似文献   

8.
Poly(methacrylic acid)‐grafted chitosan membranes (chitosan‐g‐poly(MAA)) were prepared in two sequential steps: in the first step, chitosan membranes were prepared by phase‐inversion technique and then epichlorohydrin was used as crosslinking agent to increase its chemical stability in acidic media; in the second step, the graftcopolymerization of methacrylic acid onto the chitosan membranes was initiated by ammonium persulfate (APS) under nitrogen atmosphere. The chitosan‐g‐poly(MAA) membranes were first used as an ion‐exchange support for adsorption of trypsin from aqueous solution. The influence of pH, equilibrium time, ionic strength, and initial trypsin concentration on the adsorption capacity of the chitosan‐g‐poly(MAA) membranes have been investigated in a batch system. Maximum trypsin adsorption onto chitosan‐g‐poly(MAA) membrane was found to be 92.86 mg mL?1 at pH 7.0. The experimental equilibrium data obtained for trypsin adsorption onto chitosan‐g‐poly(MAA) membranes fitted well to the Langmuir isotherm model. The adsorption data was analyzed using the first‐ and second‐order kinetic models, and the experimental data was well described by the second‐order equation. More than 97% of the adsorbed trypsin was desorbed using glutamic acid solution (0.5M, pH 4.0). In addition, the chitosan‐g‐ poly(MAA) membrane prepared in this work showed promising potential for various biotechnological applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Because of its unique properties, such as specific functionality and large specific surface area, iron oxide nanoadsorbents had showed potential for energy and environmental applications. This work investigated the adsorptive removal of different metal ions from wastewater by superparamagnetic iron oxide nanoadsorbents (Fe3O4). Batch‐adsorption technique was employed to assess the kinetic behaviour and adsorption equilibrium of cadmium, cobalt and nickel. Accordingly, the effect of the following variables on the adsorption reaction was tested, namely: solution pH, contact time and temperature. Metal ion adsorption was found to be highly pH dependent with a maximum uptake achieved around pH 5.5. Kinetic studies showed that adsorption was fast and equilibrium was achieved in less than 60 min. The external mass transfer kinetic model was applied to the experimental results and provided reasonable overall volumetric mass transfer coefficients. Adsorption isotherms were determined and appropriately described by the Freundlich and Langmuir models, with a better fit to the Freundlich model. The amount of metal ion adsorbed increased as the temperature increased, suggesting an endothermic adsorption process. The thermodynamics studies indicated that the adsorption process was spontaneous and endothermic in nature. © 2011 Canadian Society for Chemical Engineering  相似文献   

10.
《分离科学与技术》2012,47(14):2051-2063
The ability of an iron-impregnated ion exchange bead (PWX5) to remove As(V) from ground water was investigated. The effects of particle size, solution pH, As(V) concentration, competition, adsorbent concentration, temperature, iron content, and iron accessibility on removal kinetics and/or equilibrium were determined. PWX5's performance was compared to other iron-based adsorbents, primarily Bayoxide® E-33 (E-33), a granular ferric oxide, for arsenic removal performance. All of the factors cited impacted either the amount of As(V) adsorbed or the rate of adsorption. Stirred batch reactor data showed the rate of adsorption increased as particle size decreased and bottle point isotherm data showed As(V) adsorption maximum capacity increased with higher initial adsorbate concentration. The presence of phosphate and silicate reduced the amount of As(V) adsorbed as did a pH > 7.0. PWX5 is durable, rather homogeneous in size and effective at removing As(V). It is a viable alternative to E-33 which has a wider size distribution and wears more easily.  相似文献   

11.
Three kinds of redox fibers (fibers II, III, and IV) are prepared by amination of the reactive chloromethylated poly(vinyl acetate) grafting polystyrene‐divinylbenzene fiber (fiber I) with diethanolamine, ethanolamine, or triethanolamine. The N‐content of the fibers is 2.26, 2.71, and 1.86 mmol g−1, respectively. Results of static adsorption experiments show that the adsorption amount of fibers II, III, and IV toward Au(III) reaches 550 mg g−1, 620 mg g−1, and 409 mg g−1, respectively, between pH 2.0 and pH 3.0. Some adsorbed Au(III) can be reduced to Au(0). The reduction percentage of Au(III) adsorbed by fiber II increases with rising pH value of the solution and can be as high as 87% at pH 5.0. The amount of Au(III) adsorbed by fiber II increases with solution temperature, but decreases with ionic strength of the solution. The adsorption amount of fibers II and III toward Au(III) is less in ethanol or in acetacetate medium than in water. Kinetic adsorption data indicates that 50 min is needed for fiber II to adsorb half of its saturate adsorption amount of Au(III). It was proved by elemental analysis, infrared spectroscopy, nuclear magnetic resonance, and electron spectroscopy for chemical analysis determinations that the carbon atoms connecting with the hydroxy groups near the nitrogen atoms were easily oxidized into carbonyl ones during redox adsorption reaction of fibers II, III, and IV with Au(III). Some grains of gold adsorbed on fiber II were discovered under scanning electron microscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 47–54, 1999  相似文献   

12.
The chelating resins have high potential applications for the selective removal and recovery of metal ions from industrial waste solutions. The hydrophilic acrylate monomer with the iminodiacetic acid chelating group was prepared from glycidyl methacrylate and iminodiacetic acid at 60°C. The microbeads, prepared from acrylate monomer with the iminodiacetic acid chelating group, were employed by inversion suspension polymerization. In the pH range of 2–6, a reasonably good equilibrium sorption capacity is maintained for Cr3+ (ca. 2.7 mmol/g) and Cu2+ (ca. 1.8 mmol/g) in the chelating resins. The adsorption of Cd2+ and Pb2+ on microbeads is clearly affected by the pH of the solution, such that these ions' adsorption capacity increased with the pH of the aqueous solution. The adsorption of Cd2+ (ca. 1.25–1.87 mmol/g) and Pb2+ (ca. 0.99–1.89 mmol/g) showed a maximum at approximately pH = 5 and 6, respectively. The adsorption isotherms of Cr3+ and Cu2+ adsorbed on microbeads were following the Langmuir isotherm, but the adsorption behavior of Cd2+ and Pb2+ were not. The concentration of alkaline earth–metal cations on the range of 0–200 ppm had no influence on metal ions adsorbed capacity of chelating resins. Additionally, NTA (nitrilotriacetic acid) had no significant influence on metal ion adsorption by chelating resins. Furthermore, phenol pollutant can be adsorbed effectively by metal ions chelated microbeads; therefore, the microbeads were useful not only in recovering metal ions but also in the treating phenol pollutants in wastewater. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1353–1362, 2002; DOI 10.1002/app.10243  相似文献   

13.
1,4,8,11‐Tetraazacyclotetradecane (cyclam) was reacted with acryloyl chloride in a 1 : 2 molar ratio in dichloromethane in the presence of pyridine at 0°C. The modified cyclam was polymerized by adding an azobisisobutyronitrile initiator and irradiated with a UV lamp under reflux for 6 h. Precipitated cyclam containing polymer in the bulk structure was removed from the suspension by filtration. After washing and drying the final polymeric materials were used for transition metal ion adsorption and desorption studies. A Fourier transform IR spectrophotometer and thermogravimetric analyzer were used to characterize the polymeric structure. The affinity of the polymeric material for transition metal ions was used to test the adsorption–desorption of selected ions [Cu(II), Ni(II), Co(II), Cd(II), Pb(II)] from aqueous media containing different amounts of these metal ions (5–800 ppm) at different pH values (2.0–8.0). It was found that the adsorption rates were high and the adsorption equilibrium was reached in about 30 min. The uptake of the transition metal ions onto the polymer from solutions containing a single metal ion was 3.17 mmol/g for Cu(II), 0.98 mmol/g for Cd(II), 0.79 mmol/g for Co(II), 0.78 mmol/g for Ni(II), and 0.32 mmol/g for Pb(II). This polymer showed high affinity for Cu(II) compared to the other metal ions in the single ion solution and in the mixture of transition metal ions. The affinity order of the transition metal ions was Cu(II) ? Ni(II) > Cd(II) > Co(II) > Pb(II) for competitive adsorption. More than 95% of the adsorbed transition metal ions were desorbed in 2 h in a desorption medium containing 1.0M HNO3. Poly(cyclam) was found to be suitable for repeated use of more than five cycles without a noticeable loss of adsorption capacity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1406–1414, 2002  相似文献   

14.
《分离科学与技术》2012,47(9-10):653-664
Abstract

Removal and recovery of harmful arsenic ion in a geothermal power waste solution with three macroreticular chelating resins containing mercapto groups were investigated. The resin (RES), which was prepared from 2,3-epithiopropyl methacrylate-divinylbenzene copolymer beads, exhibited high affinity for arsenic(III) ion and high resistance against hot water. In the column method, arsenic(III) ion in an aqueous solution was favorably adsorbed on the RES when the sodium arsenite solution (pH 6.2) containing 3 mg/dm3 of arsenic(III) ion was passed through the RES column at a space velocity of 15 h?1. The arsenic(III) ion adsorbed was eluted by allowing 2 mol/dm3 sodium hydroxide solution containing 5% of sodium hydrogen sulfide to pass through the column. The recycle of adsorption and elution was found to be satisfactory. The RES also exhibited high adsorption ability for arsenic ion in the geothermal power waste solution.  相似文献   

15.
The possibility of temperature swing adsorption (TSA) of heavy metals on thermosensitive N-isopropylacrylamide (NIPA) gel has been examined. The NIPA gel has a high degree of affinity for Au(III) ions. The amount of Au(III) ions adsorbed on the NIPA gel is low at 10 °C and high at 50 °C, and the amount adsorbed increases in a stepwise manner with temperature around 32 °C, the lower critical solution temperature (LCST) of poly(NIPA). Au(III) ions tend to be well adsorbed on shrunken gel, but are adsorbed poorly on swollen gel. The adsorption capacity of 0.637 mmol-Au/g-dry gel at 50 °C was obtained from a Langmuir-type isotherm. The NIPA gel adsorbs and desorbs Au(III) ions reversibly by TSA between 50 °C and 10 °C. In addition, the enrichment of Au(III) ions in the diluted solution through TSA was successfully conducted. To discuss the mechanism of adsorption of Au(III) ions on the NIPA gel, the adsorption of Au(III) ions on non-thermosensitive N,N-dimethylacrylamide and thermosensitive N,N-diethylacrylamide gels, which have a structure similar to that of the NIPA gel, was also investigated. These gels adsorb Au(III) ions strongly; however, the amount of Au(III) ions adsorbed is independent of the temperature.  相似文献   

16.
The capability of the use of chitosan for removing vinyl sulfone and chlorotriazine reactive dyes from aqueous solutions was examined, including equilibrium and dynamic studies. Experiments were performed as a function of dye concentration, and the amount and particle size of chitosan. It was shown that the adsorption capacities of chitosan were comparatively high for the three investigated dyes. The equilibrium data could be best fitted by the Redlich–Peterson equation over the entire concentration range (50–500 g m−3). A comparison of the adsorption capacity among such adsorbents as chitin and powdered activated carbon was made. Two rate parameters were finally obtained to describe the adsorption process on a quantitative basis. These parameters could be well correlated to the amount and particle size of dry chitosan. ©1997 SCI  相似文献   

17.
The chelating membranes for adsorption of metal ions were prepared by the photografting of glycidyl methacrylate (GMA) onto a polyethylene (PE) film and the subsequent modification of the resultant GMA‐grafted PE (PE‐g‐PGMA) films with disodium iminodiacetate in an aqueous solution of 55% DMSO at 80°C. The adsorption and desorption properties of the iminodiacetate (IDA) group‐appended PE‐g‐PGMA (IDA‐(PE‐g‐PGMA)) films to Cu2+ ions were investigated as functions of the grafted amount, pH value, Cu2+ ion concentration, and temperature. The amount of adsorbed Cu2+ ions increased with an increase in the pH value in the range of 1.0–5.0. The time required to reach the equilibrium adsorption decreased with an increase in the temperature, although the degree of adsorption stayed almost constant. The amount of Cu2+ ions desorbed from the (IDA‐(PE‐g‐PGMA)) films increased and the time required to reach the equilibrium desorption decreased with an increase in the HCl concentration. About 100% of Cu2+ ions were desorbed in the aqueous HCl solutions of more than 0.5M. The amounts of adsorbed and desorbed Cu2+ ions were almost the same in each cyclic process of adsorption in a CuCl2 buffer at pH 5.0 and desorption in an aqueous 1.0M HCl solution. These results indicate that the IDA‐(PE‐g‐PGMA) films can be applied to a repeatedly generative chelating membrane for adsorption and desorption of metal ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99:1895–1902, 2006  相似文献   

18.
《分离科学与技术》2012,47(5):817-832
ABSTRACT

In this study a comparative biosorption of iron(III)—cyanide complex anions from aqueous solutions to Rhizopus arrhizus and Chlorella vulgaris was investigated. The iron(III)—cyanide complex ion-binding capacities of the biosorbents were shown as a function of initial pH, initial iron(III)—cyanide complex ion, and biosorbent concentrations. The results indicated that a significant reduction of iron(III)—cyanide complex ions was achieved at pH 13, a highly alkaline condition for both the biosorbents. The maximum loading capacities of the biosorbents were found to be 612.2 mg/g for R. arrhizus at 1996.2 mg/L initial iron(III)—cyanide complex ion concentration and 387.0 mg/g for C. vulgaris at 845.4 mg/L initial iron(III)—cyanide complex ion concentration at this pH. The Freundlich, Langmuir, and Redlich-Peterson adsorption models were fitted to the equilibrium data at pH 3, 7, and 13. The equilibrium data of the biosorbents could be best fitted by all the adsorption models over the entire concentration range at pH 13.  相似文献   

19.
The equilibrium and kinetic properties of Cr(III) ion adsorption by two brown coals from Anatolia, Turkey, have been investigated in batch stirred-tank experiments. The effects of adsorbent dose, initial sorbate concentration and contact time on the adsorption of Cr(III) by Isparta-Yalvaç-Yarikkaya (YK) and Kasikara (KK) brown coals were evaluated. The Cr(III) ions are able to form complex compounds with carboxylic and phenolic groups of brown coals and they were also bounded with phenolic groups even at low pH reaction of the solution (<3). Mechanisms including ion exchange, complexation and adsorption to the surface are possible in the sorption process. Our batch adsorption studies show the equilibrium adsorption data fit the linear Langmuir adsorption isotherm. Adsorption equilibrium was achieved in about 15–20 min for chromium(III). The Langmuir adsorption isotherm was used to describe the observed sorption phenomena. The maximum equilibrium uptake was 0.05 mmol of Cr(III)/g for KK, and 0.26 mmol of Cr(III)/g for YK, respectively, at a pH of 4.5. More than 90% of chromium(III) was removed by KK and YK from an aqueous solution after 60 min. In every experiment, the maximum Cr(III) was sequestered from the solution within 60 min. It is proposed that KK and YK brown coals can be used as potential sorbents for Cr(III) removal from aqueous solutions.  相似文献   

20.
Iron ore slimes, a waste material generated during iron ore mining have been employed for the removal of lead ions from aqueous solutions by a batch adsorption technique. The slime sample contains 45.8% Fe, 13.6% SiO2, and 13.9% Al2O3. It is characterized by X-ray diffraction (XRD) and optical microscopy to determine the presence of different phases such as hematite, goethite, limonite, quartz and kaolinite. It is assumed that the adsorption of lead ions is mainly due to the presence of pores and cavities in goethite mineral. The FTIR studies showed the presence of Si-OH and Fe-OH sites responsible for adsorption. Furthermore, the point of zero charge (pzc) of iron ore slime is shifted from 6.2 to 5.8 due to the adsorption of lead ions. Batch adsorption experiments have been conducted to study the sorption behavior of lead ions on iron ore slime. The effects of agitation time, concentration of lead ions, adsorbent doses, solution pH, other metal ions and temperature on the amount of lead ions adsorbed have been investigated. Lead ion adsorption is fast, and equilibrium could be achieved within 15 minutes of time. The adsorption increased with increase in temperature suggesting an endothermic adsorption. Under the conditions, it is possible to remove 95% lead from an aqueous solution bearing ∼20 mg/l at pH∼5.1. The equilibrium adsorption isotherm data fitted very well to both Langmuir and Freundlich adsorption models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号