首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过扫描电镜、差示扫描量热仪和力学性能测试等方法研究了聚丙烯接枝马来酸配和酷酸乙烯酷(PP-g-MAH/VAc)对聚丙烯康酸胺6(80/20}共混体系的增容效果。结果表明,PP-g-(MAH/DAc)用于PP/PA6共混体系,分散相PA6的微区尺寸可以减小到5μm以下,相应地提高了共混物的断裂伸长率、拉伸强度和冲击强度。使用接枝率为5.3%的PP-g-(MAH/VAc)作为相容剂,当用量为8%时,体系的拉伸强度为60.88MPa,断裂伸长率为558%,冲击强度为5.28KJ/㎡.DSC分析表明,PP/PA6共混体系各组分相互促进成核,结晶度降低。FTIR结果表明,PP-g-(MAH/VAc)中的MAH上的酸配基团与PA6中的酸胺键发生了化学反应从而改善了体系的相容性。  相似文献   

2.
This article concerns the in situ compatibilization of immiscible isotactic polypropylene/butadiene‐styrene‐butadiene triblock copolymer blends (i‐PP/SBS) by means of a reactive mixture. For this purpose, maleated PP (PP‐MAH) and SBS (SBS‐MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends i‐PP/SBS, nonreactive ternary blends i‐PP/PP‐MAH/SBS, and reactive ternary blends i‐PP/PP‐MAH/SBS‐MAH with varying diamine and anhydride molar ratios were prepared. Torque measurements suggest a graft copolymerization during the melt blending for ternary reactive blends, but the extension of the grafting does not vary with the diamine and anhydride molar ratio, but with the elastomer concentration. The morphology of the blends was investigated by scanning electron microscopy. The morphology of binary and ternary nonreactive blends is similar, exhibiting elastomer domains disperse in the i‐PP matrix, whose sizes increase with elastomer concentration. On the other hand, the elastomer domain size in the ternary reactive blends is practically independent of the blends composition and of the diamine and anhydride molar ratio. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 847–855, 2002  相似文献   

3.
以BPO为引发剂,通过悬浮固相接枝法,得到PP-g-(MAH/VAc)和PP-g-(MA/AA)接枝物,通过称重法和非水滴定法测得了接枝物的接枝率。红外光谱表明,单体都能接枝到PP上。SEM结果表明PP/PA6/PP接枝物共混体系中,PP-g-(MAH/VAc)的增容效果优于PP-g-(MA/AA),这主要是因为PP-g(MAH/VAc)在PP/PA6体系中起到反应性增容的作用,而PP-g-(MA/AA)仅起到物理缠结的作用。  相似文献   

4.
This article concerns the in situ compatibilization of immiscible isotatic polypropylene/styrene–butadiene–styrene triblock copolymer blends (i‐PP/SBS) by use of a reactive mixture. For this purpose, maleated PP (PP–MAH) and SBS (SBS–MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends of i‐PP/SBS, nonreactive ternary blends of i‐PP/PP–MAH/SBS, and reactive ternary blends of i‐PP/PP–MAH/SBS–MAH with varying diamine/anhydride molar ratios were prepared. The mechanical properties of the blends were determined by tensile and impact‐resistance tests. The optimum improvement in the mechanical properties was found when the diamine/anhydride molar ratio in the ternary reactive blends was 0.5/1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 516–522, 2003  相似文献   

5.
Polypropylene (PP) was modified by solid‐phase graft copolymerization with maleic anhydride (MAH) and styrene (St), using benzoyl peroxide as the initiator and xylene as the interfacial agent. Effects of various factors such as monomer concentration, monomer ratio, initiator concentration on grafting percentage, and acid value were investigated. The graft copolymer was characterized by Fourier transform infrared, pyrolysis gas chromatography—mass spectroscopy, and dynamic mechanical analysis, and the intrinsic viscosity of the extractive from the reaction product was investigated. The results showed that the grafting percentage and acid value of the graft copolymer of PP with two monomers (MAH and St) were considerably higher than those of the graft copolymer of PP with MAH alone. The graft segments were shown to be the copolymer of St and MAH with a substantial molecular weight. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2482–2487, 2000  相似文献   

6.
The influence of 1‐decene as the second monomer on the melt‐grafting behavior of maleic anhydride (MAH) onto polypropylene (PP) was studied with differential scanning calorimetry and Fourier transform infrared spectroscopy. We found that the value of the grafting degree increased from 0.68% for pure MAH‐g‐PP to 1.43% for the system with a 1‐decene/MAH molar ratio of 0.3, whereas the maximum value with styrene (St) as the second monomer was 0.98% under an St/MAH molar ratio of 1.0. Compared with the contribution of St/MAH‐g‐PP to the peeling strength between the PP and polyamide (PA) layer for a PP/PA laminated film, the introduction of 1‐decene/MAH‐g‐PP increased the peeling strength from 180 g/15 mm to 250 g/15 mm. 1‐Decene inhibited the chain scission behavior of PP. 1‐Decene reacted with MAH to form a 1‐decene/MAH copolymer or the Alder‐ene reaction product before the two monomers grafted onto PP. The grafting of the reactive product onto PP greatly improved the grafting degree of MAH. What is more, because of the similar chemical structures of 1‐decene and PP, the affinity of 1‐decene with PP was higher than that of St. Compared with St, the introduction of less 1‐decene led to a higher grafting degree and higher peeling strength. Therefore, we concluded that 1‐decene was more effective for improving the grafting degree of MAH onto PP. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The phosphoric acid‐pentaerythritol‐melamine copolymer, which is composed of three main components of intumescent flame retardant (IFR) and has optimal intumescent degree, was selected as IFR. The influence of meleated polypropylene (PP‐g‐MAH) on the properties and compatibility of IFR polypropylene (PP) composites were studied. The results obtained from mechanical tests, rheological behavior of composites, and scanning electron microscope showed that PP‐g‐MAH was a true coupling agent for IFR/PP blends and did not change the necessary flame retardancy. The cocrystallization between bulk PP and PP segments of PP‐g‐MAH was also proven by WAXD analysis. Flow test showed that the flow behaviors of composites in the melt are those of a pseudoplastic and it is very small for PP‐g‐MAH affecting rheological behavior of the PP/IFR composite. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 257–262, 2002  相似文献   

8.
The free‐radical graft copolymerization of maleic anhydride (MAH) onto polypropylene (PP) with the assistance of styrene (St) in supercritical carbon dioxide (CO2) was studied. The effects of the St concentration and initiator concentration on the functionality degree of the grafted PP in supercritical CO2 were investigated. The addition of St drastically increased the MAH functionality degree, which reached a maximum when the molar ratio of MAH and St was 1:1. St, an electron‐donating monomer, could interact with MAH through charge‐transfer complexes to form the St–MAH copolymer (SMA), which could then react with PP macroradicals to produce branches by termination between radicals. There was SMA in the grafting reaction system characterized by Fourier transform infrared and differential scanning calorimetry. Furthermore, the highest MAH functionality degree was obtained when the concentration of 2,2′‐azobisisobutyronitrile (AIBN) was 0.6 wt % based on PP. The effects of the temperature and pressure of supercritical CO2 on the functionality degree of the grafted PP were analyzed. An increase in the temperature accelerated the decomposition rate constant of AIBN, thereby promoting the grafting reaction. In addition, an increase in the temperature increased the diffusion of monomers and radicals in the disperse reaction system of supercritical CO2. The highest degree of functionality was found at 80°C. Also, the functionality degree of grafted PP decreased with an increase in the pressure of supercritical CO2 within the experimental range. The morphologies of pure PP and grafted PP were significantly different under polarizing optical microscopy. The PP spherulites were about 38 μm in size, and the grafted PP spherulites were significantly reduced because of heterogeneous nucleation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 853–860, 2003  相似文献   

9.
The melt‐direct intercalation method was employed to prepare poly(propylene) (PP)–maleic anhydride grafted poly(propylene) (PP‐g‐MAH)–organic‐montmorillonite (Org‐MMT) nanocomposites. X‐ray diffractometry (XRD) was used to investigate the intercalation effect, crystallite size, and crystal cell parameter in these composites. Two kinds of maleated PP, with graft efficiencies of 0.6 and 0.9 wt %, and two sorts of manufacturing processes were used to prepare nanocomposites and then to investigate their effects on intercalation behavior. The results showed that the intercalation effect was enhanced by increasing the content of PP‐g‐MAH, using maleated PP with higher graft efficiency, and adopting the mold process. The crystallite size of nanocomposites perpendicular to the crystalline plane, such as (040), (130), (111), and (041), reached the minimum value when the content of PP‐g‐MAH was 20 wt %. This result indicated that the crystallite size of PP in nanocomposites decreased by proper addition of PP‐g‐MAH. Maximum values in tensile strength (40.2 MPa) and impact strength (24.3 J/m) were achieved when the content of PP‐g‐MAH was 10 and 20%, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3225–3231, 2003  相似文献   

10.
In this work, maleic anhydride‐grafted polypropylene (PP‐g‐MAH) and maleic anhydride‐grafted poly(acrylonitrile‐butadiene‐styrene) (ABS‐g‐MAH) at 2 : 1 mass ratio were added as a compatibilizer in the PP/ABS blends. The compatibilizing effect was evaluated by adding the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ). The reaction in reactive extrusion, morphological structure, and properties of PP and ABS blends were investigated by using infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray spectrum, transmission electron microscope (TEM), dynamic thermomechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical properties tests. The results showed that the compatibilizing effect was greatly improved because of the addition of the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ) because the link structure of PP‐g‐MAH and ABS‐g‐MAH was formed by the reaction of anhydride group with epoxy group catalyzed by the imidazole. The size of the dispersed phase decreased dramatically, the interfacial adhesion between ABS particles and PP matrix was improved, and the tensile strength and flexural modulus of the PP/ABS blends increased further. The optimizing properties were obtained at 3 phr E51/2E4MZ. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40898.  相似文献   

11.
Polyethylene terephthalate (PET) and polypropylene (PP) are incompatible thermoplastics because of differences in chemical structure and polarity, hence their blends possess inferior mechanical and thermal properties. Compatibilization with a suitable block/graft copolymer is one way to improve the mechanical and thermal properties of the PET/PP blend. In this study, the toughness, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA) of PET/PP blends were investigated as a function of different content of styrene‐ethylene‐butylene‐styrene‐g‐maleic anhydride (SEBS‐g‐MAH) compatibilizer. PET, PP, and SEBS‐g‐MAH were melt‐blended in a single step using the counter rotating twin screw extruder with compatibilizer concentrations of 0, 5, 10, and 15 phr, respectively. The impact strength of compatibilized blend with 10 phr SEBS‐g‐MAH increased by 300% compared to the uncompatibilized blend. Scanning electron microscope (SEM) micrographs show that the addition of 10 phr SEBS‐g‐MAH compatibilizer into the PET/PP blends decreased the particle size of the dispersed PP phase to the minimum level. The improvement of the storage modulus and the decrease in the glass transition temperature of the PET phase indicated an interaction among the blend components. Thermal stability of the PET/PP blends was significantly improved because of the addition of SEBS‐g‐MAH. J. VINYL ADDIT. TECHNOL., 23:45–54, 2017. © 2015 Society of Plastics Engineers  相似文献   

12.
以SBS和SIS为基材,采用不同橡胶胶种、丙烯酸及其酯类单体进行接枝共聚合成胶粘剂。研究了 CSM(氯磺化聚乙烯)、A-90(氯丁橡胶)、NR(丁腈)等橡胶胶种对SBS/SIS与AA/BA/MMA/GDMA进行化学改性的影响,同时还探讨了N-MAM(N-羟甲基丙烯酰胺)、GDMA(二甲基丙烯酸乙二醇酯)、TMPTMA(三羟甲基丙烷甲基丙烯酸酯)、MAH(顺丁烯二酸酐)、VAc(醋酸乙烯)等单体对SBS/SIS、丁腈橡胶、氯丁橡胶为接枝母体进行化学改性的效果。结果表明:以SBS/SIS为基材,以氯丁橡胶(A-90)为接枝母体,用AA/BA/ MMA/环氧丙烯酸酯/MAH/N-MAM/GDMA/TMPTMA/VAc混合单体进行接枝改性制得的胶粘剂对极性材料帆布的粘附力较强;以SBS/SIS为复合基材,以丁腈橡胶为接枝母体,用AA/BA/MMA/TMPTMA混合单体接枝改性制得的胶粘剂对非极性材料PP片的粘接强度较高。  相似文献   

13.
用双螺杆挤出机分别制备了马来酸酐(MAH)和MAH-苯乙烯(St)共单体接枝共聚聚丙烯(PP)。红外光谱分析表明:MAH单体被接枝到PP大分子链上;引入St后,产物熔体流动速率从16.42 g/10min降为0.60 g/10 min;吸光度比从0.021升高到0.778,但St含量过高时,PP基体发生交联,影响接枝共聚物的加工性能。探讨了共单体St的作用机理以及交联机理。  相似文献   

14.
Oil palm empty fruit bunch (EFB)‐filled polypropylene (PP) composites were produced. The EFB filler was chemically modified with maleic anhydride (MAH). The effects of the filler size and chemical modification of EFBs on the tensile and dimensional stability properties of EFB–PP composites were studied. The composites with MAH‐treated EFBs showed higher tensile strengths than those with untreated EFBs. This was attributed to the enhanced compatibility between the MAH‐treated EFBs and PP matrix, as shown in a scanning electron microscopy study. Fourier transform infrared analysis showed evidence of C?C and C?O bonds from MAH at 1630 and 1730 cm?1, respectively. The MAH‐treated PP composites showed lower water absorption and thickness swelling than those with untreated EFBs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 827–835, 2003  相似文献   

15.
Among modified Poly(propylene)s (PPs) grafted with polar monomers, PP grafted with maleic anhydride (PP-g-MAH) is known to be the most efficient compatibilizer for PP/clay nanocomposites, since it provides well-dispersed nanostructures and yields optimal physical properties of the nanocomposites. One drawback of this material, however, is that it becomes brittle and its viscosity decreases drastically, leading to nanocomposites with low toughness as the graft degree of MAH increases. Therefore, there is a limitation to increasing both stiffness and toughness of PP/clay nanocomposites with PP-g-MAH. In this study, we investigated the performance of a PP grafted with maleic anhydride and styrene (PP-g-MAH-St) as compatibilizers in PP/clay nanocomposites. It was found that the incorporation of styrene as a comonomer prevents molecular weight reduction of the PP main chain upon high loading of a radical initiator for high graft degree of MAH. The compatibilizers (PP-g-MAH-St) thus obtained show good compatibilizing performance in PP/clay nanocomposites. The PP/clay nanocomposites compatibilized by PP-g-MAH-St show both high stiffness and toughness, which is accomplished by using a compatibilizer of higher viscosity compared with PP-g-MAH.  相似文献   

16.
Polypropylene (PP)/polystyrene (PS) blends modified with reactive monomers, such as maleic anhydride (MAH) and styrene (St), and in situ formed PP/PS blends were prepared by melting extrusion. The crystallization and melting behavior and the dynamic mechanical properties of the PP/PS blends, including the structure of the grafted copolymer, were investigated with differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared. The results indicated that the addition of MAH hardly influenced the crystallization temperature of PP in the blends, but the addition of MAH and St increased the crystallization temperature of PP in its blends. The blends showed no remarkable variety for the melting temperature, but the shapes of the melting peaks were influenced by the addition of the reactive monomers. In addition, a significant increase in the storage and loss moduli of all the modified PP/PS blends was observed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2038–2045, 2005  相似文献   

17.
The β‐nucleating activity and toughening effect of acrylonitrile–butadiene–styrene (ABS) graft copolymer on isotactic polypropylene (iPP) and the compatibilizing role of maleic anhydride grafted polypropylene (PP‐g‐MAH) on the iPP/ABS blends were investigated. The results show that ABS can induce the formation of β‐crystal in iPP, and its β‐nucleating efficiency depends on its concentration and dispersibility. The relative content of β‐crystal form is up to 36.19% with the addition of 2% ABS. The tensile and impact properties of the iPP were dramatically enhanced by introducing ABS. The incorporation of PP‐g‐MAH into the iPP/ABS blends inhibits the formation of β‐crystal. The crystallization peaks of the blends shift toward higher temperature, due to the heterogeneous nucleation effect of PP‐g‐MAH on iPP. The toughness of iPP/ABS blends improved due to favorable interfacial interaction resulting from the compatibilization of PP‐g‐MAH is significantly better than the β‐crystal toughening effect induced by ABS. POLYM. ENG. SCI., 59:E317–E326, 2019. © 2019 Society of Plastics Engineers  相似文献   

18.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

19.
Standing on a hypothesis that the sharkskin of a polymer with a narrow molecular weight distribution at extrusion processing originates from a stick‐slip of the polymer at the die wall, the suppression of the sharkskin was tried by means of suppressing the slip by the addition of adhesives. To polypropylene (PP)‐type resins with narrow molecular weight distributions such as a PP‐type thermoplastic elastomer, PER and a controlled rheology PP were added small amounts of adhesives such as maleated PP, maleated PER, reactive polyolefin oligomers, ethylene/ethylacrylate/maleic anhydride (MAH) copolymer, ethylene/vinyl acetate copolymer, and styrene/MAH copolymer, and their melt fracture behaviors at capillary extrusion were observed. It was found that the sharkskin of the PP‐type resins with narrow molecular weight distributions was suppressed by the addition of the adhesive resins with good adhesion to metal. The suppressive effect of the sharkskin was generally the more remarkable by the higher loading of the adhesives with the higher MAH content. This is the direction of increasing adhesion. From this fact, it was assumed that the sharkskin of the PP‐type resins with narrow molecular weight distribution does not originate from a periodic growth and relaxation of tensile stress at the extrudate surface but from a stick‐slip at the die wall. Based on this mechanism, it may be said that the sharkskin can be suppressed by both ways of directions of promoting and suppressing the slip at the die wall. The former way is the previously known method, and the latter way is the method proposed in the present study. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2120–2127, 2002  相似文献   

20.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号