首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highly hydrophilic interpenetrating polymer network (IPN) membranes were prepared from a mixture system of poly(4-vinylpyridine) (P4VP) and poly(vinyl alcohol) (PVA) by quaternizing crosslinking of P4VP with 1,4-dibromobutane (DBB) and simultaneous crosslinking of PVA with hexamethylene diisocyanate (HMDI). The membrane performance in pervaporation (PV) for the azeotropic mixture of ethanol with a less polar organic liquid (chloroform, benzene, carbon tetrachloride, and cyclohexane) was investigated. The strength of these IPN membranes was higher than that of the cellulose acetate membrane and depended on the membrane composition. All the membranes were ethanol permselective for the azeotropic feeds and equimolar mixture feeds as well. Only the swelling degree Q of the membrane, among several physicochemical factors, showed a relationship with the separation performance for the four feeds; a lower value of Q generally corresponded to a higher separation factor and smaller permeability. The membrane composition, which exhibited an optimum membrane performance, was examined in detail for some membranes. Both the separation factor for sorption and that for diffusion far exceeded unity, but the latter was greater in most cases than was the former and dominated the overall separation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2729–2738, 2001  相似文献   

2.
Alkaline anion exchange membrane with semi‐interpenetrating polymer network (s‐IPN) was constituted based upon quaternized poly(butyl acrylate‐co‐vinylbenzyl chloride) (QPBV) and poly(vinylidene fluoride‐co‐hexafluoropropylene) [P(VDF‐HFP)]. The QPBV was synthesized via the free radical copolymerization, followed by quaternization with N‐methylimidazole. The s‐IPN system was constituted by melting blend of QPBV and P(VDF‐HFP), and then crosslinking of P(VDF‐HFP). Ion exchange capacity, water uptake, mechanical performance, and thermal stability of these membranes were characterized. TEM showed that alkaline anion exchange membrane exhibited s‐IPN morphology with microphase separation. The fabricated s‐IPN membrane exhibited hydroxide ion conductivity up to 15 mS cm?1 at 25 °C and a maximum DMFC power density of 46.55 mW cm?2 at a load current density of 98 mA cm?2 at 30 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45775.  相似文献   

3.
Sequential interpenetrating polymer networks (IPNs) based on nitrile rubber and poly(methyl methacrylate) (PMMA) were synthesized. IPN compositions were varied by varying the swelling time. Two methods were adopted for making IPNs. The first method is “single‐step IPN” (SIPN) and the second method is “multistep IPN” (MIPN). The compositions were fixed around 90, 80, 70, 60 and 50% of NBR. In SIPN mode, swelling in monomer and subsequent curing was done once. In MIPN mode, swelling in monomer and curing was repeatedly done. Tensile strength of IPNs was found to increase with PMMA content, MIPN showing higher strength compared to SIPN. Dynamic modulus showed a similar trend. The tan δ value was found to decrease with PMMA content. At 62/38 nitrile rubber (NBR)/PMMA, MIPN composition isolated tan δ peaks appeared near glass transition temperatures of NBR and PMMA, respectively. Scanning electron micrograph showed phase‐separated morphology at the same MIPN composition. Solvent resistance increased with IPN formation maintaining higher resistance for MIPN compared to SIPN. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 354–360, 2004  相似文献   

4.
In this work, the properties of novel ionic polymer blends of crosslinked and sulfonated poly(vinyl alcohol) (PVA) and sulfonated poly(ether ether ketone) (SPEEK) are investigated. Crosslinking and sulfonation of PVA were carried out using sulfosuccinic acid (SSA) in the presence of dispersed SPEEK to obtain semi‐interpenetrating network blends. PVA–SSA/SPEEK blend membranes of different compositions were studied for their ion‐exchange capacity, proton conductivity, water uptake, and thermal and mechanical properties. The hydrated blend membranes show good proton conductivities in the range of 10?3 to 10?2 S/cm. When compared with pure component membranes, the PVA–SSA/SPEEK blend membranes also exhibit improvement in tensile strength, tensile modulus, and delay in the onset of thermal and chemical degradation. Semi‐interpenetrating nature of the blends is established from morphology and dynamic mechanical analysis. Morphology of the membranes was studied using scanning electron microscopy after selective chemical treatment. The dynamic mechanical properties of the membranes are examined to understand the miscibility characteristics of the blends. The relative proportions of PVA and SPEEK and the degree of crosslinking of PVA–SSA are important factors in determining the optimum properties for the blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Semi‐interpenetrating networks (Semi‐IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly(vinyl alcohol) (PVA) by the sol‐gel process in this study. The characterization of the PDMS/PVA semi‐IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (? OH) and hydrophobic (Si? (CH3)2) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi‐IPNs prepared, which led to a maximum equilibrium water content of ~ 14 wt % without a loss in the ability to swell less polar solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(butyl methacrylate) (PBMA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PBMA, respectively. These were then characterized with reference to their mechanical, thermal, and morphological properties. The mechanical and thermal characteristics revealed modification over the unmodified polymeric systems in relation to their phase morphologies. The semi‐1 IPNs displayed a decrease in their mechanical parameters of modulus and UTS while semi‐2 IPNs exhibited a marginal increase in these two values. The semi‐1 IPNs, however, also revealed a decrease in the elongation and toughness values away from the normal behavior. The thermomechanical behavior of both the systems is in conformity with their mechanicals in displaying the softening characteristics of the system and stabilization over unmodified PVC. The DSC thermograms are also correlated to these observations along with the heterogeneous phase morphology which is displayed by both the systems especially at higher concentration of PBMA incorporation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Interpenetrating polymer networks (IPNs) constructed with poly(vinyl alcohol) (PVA) and poly(diallyldimethyl ammonium chloride) (PDADMAC) using a sequential IPN method were prepared. The thermal characterization of the IPNs was investigated by differential scanning calorimetry (DSC), dielectric analysis (DEA), and thermogravimtric analysis (TGA). Decreases in the melting temperature of PVA segments in IPNs were observed with increasing PDADMAC content using DSC. DEA was employed to ascertain glass transition temperature of IPNs. The thermal decomposition of IPNs was investigated using TGA, and thermal decomposition of IPNs could be decelerated by changing PVA content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1346–1349, 2003  相似文献   

8.
This study investigates the sorption and transport properties of hydrocarbon membranes based on poly(vinyl alcohol) network and poly(styrene sulfonic acid‐co‐maleic acid) (PSSA‐MA). The water and methanol self‐diffusion coefficients through an 80 wt % PSSA‐MA interpenetrating SIPN‐80 membrane measured 3.75 × 10?6 and 5.47 × 10?7 cm2/s, respectively. These results are lower than the corresponding values of Nafion® 115 (8.89 × 10?6 cm2/s for water and 8.63 × 10?6 cm2/s for methanol). The methanol permeability of SIPN‐80 membrane is 4.1 × 10?7 cm2/s, or about one‐fourth that of Nafion® 115. The difference in self‐diffusion behaviors of Nafion® 115 and SIPN‐80 membranes is well correlated with their sorption characteristics. The solvent uptake of Nafion® 115 increased as the methanol concentration increased up to a methanol mole fraction of 0.63, and then decreased. However, the solvent uptake of the SIPN‐80 membranes decreased sluggishly as the methanol concentration increased. The λ values of water and methanol (i.e., λ and λ) in Nafion® 115 are quite close, indicating no sorption preference between water and methanol. In contrast, the λ value is only one‐third λ for a SIPN‐80 membrane. Accordingly, the SIPN membranes are regarded as candidates for direct methanol fuel cell applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Electrospun fibers of poly(vinyl alcohol) (PVA) and PVA/poly(4‐styrenesulfonic acid) (PSSA) were obtained. By varying PVA to PSSA weight ratios, various fiber sizes and shapes were observed. The fiber diameters ranged from 176 to 766 nm, and the largest fibers were obtained from 15 wt % aqueous PVA solution. The effect of solution viscosity on fiber morphology was discussed. The presence of PSSA in electrospun fibers was confirmed by Fourier Transform Infrared spectroscopy. The PVA fibers were thermally stable up to 250°C, and the PVA/PSSA fibers were stable up to approximately 150°C. The water stability of the fibers was improved by heat‐treatment at 120°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by the sequential‐IPN method. The thermal characterization of the IPNs was investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depression of the melting temperature (Tm) of the PVA segment in IPNs was observed with increasing PNIPAAm content using DSC. DEA was employed to ascertain the glass‐transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tg values, indicating the presence of phase separation in the IPNs. The thermal decomposition of IPNs was investigated using TGA and appeared at near 200°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 881–885, 2003  相似文献   

11.
The main objective of this work is the development of anionic exchange membranes for the treatment of solutions containing metallic ions using the electrodialysis process. Anionic membranes were synthesized from poly(vinyl alcohol), with the insertion of quaternary ammonium groups in the polymeric matrix and subsequent crosslinking with glutaraldehyde and maleic anhydride. Different membranes were synthesized in order to evaluate the combination of physical–chemical properties and ionic transport. The morphology and structure of the membranes were investigated by scanning electron microscopy and infrared spectroscopy. The thermal transitions and stability of all the membranes were characterized using calorimetric techniques: thermogravimetric analysis, and differential scanning calorimetry, and compared with those of the individual polymers. The physical properties (ion‐exchange capacity, water absorption, and dimensional stability) showed that the different crosslink agents used significantly affect the membrane properties. The electrodialysis performance of the membranes in the transport of chloride and nitrate ions showed that the membranes produced can be successfully used in this separation process. Selemion® AMV commercial membrane was used to compare the percentage extractions of the indicated ions with the produced membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44946.  相似文献   

12.
Sulfonated poly(vinyl alcohol) (PVA) for use as a proton conductive membrane in a direct methanol fuel cell (DMFC) was prepared by reacting the PVA with sulfoacetic acid and poly(acrylic acid). The effects of the amount of sulfoacetic acid and poly(acrylic acid) on proton conductivity, methanol permeability, water uptake, and ion exchange capacity (IEC) of the sulfonated PVA membranes were investigated by using impedance analysis, gas chromatography, gravimetric analysis, and titration techniques, respectively. The water uptake of the membranes decreased with the amount of the sulfoacetic acid and the amount of poly(acrylic acid) used. The proton conductivity and the IEC values of the membranes initially increased and then decreased with the amount of the sulfoacetic acid. The methanol permeability of the sulfonated PVA membranes decreased continuously with the amount of the sulfoacetic acid. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Novel interpenetrating polymer network membranes were made from poly(vinyl alcohol)/poly(vinyl pyrrolidone) blends of different compositions. The two polymer components were independently crosslinked chemically with glutaraldehyde and photochemically with 4,4′‐diazostilbene‐2,2′‐disulfonic acid disodium salt. The membrane performances were studied in pervaporation of tetrahydrofuran (THF)/water and THF/methanol mixtures. It was found that the membranes were excellent in THF dehydration, but much less efficient for the separation of THF/methanol mixtures. The pervaporation results were consistent with the membrane swelling data. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2808–2814, 2003  相似文献   

14.
15.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

16.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003  相似文献   

17.
New ion‐exchange acid/base‐blend (SPPO/PBI) membranes were prepared by mixing N,N‐dimethylacetamide (DMA) solutions of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in the ammonium form and of polybenzimidazole (PBI), casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were found insoluble in DMA. The preliminary tests of the membranes were carried out in an H2/O2 fuel cell at room temperature. Their performance in the fuel cell increased with the increase in the concentration of SPPO sulfonic acid groups in the blend, but the membranes formed with the highly sulfonated SPPO alone or predominanting, which swelled excessively in water, did not give reproducible results, and their performance was usually inferior to that of the membranes having an optimum ratio of both components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1118–1127, 2002  相似文献   

18.
Polyethylene glycol‐400 (PEG) based polyurethane (PU) and polyacrylonitrile (PAN) semi‐interpenetrating polymer networks (SIPNs) (PU/PAN; 90/10, 70/30, 60/40, and 50/50) have been prepared by sequential polymerization method. The prepared SIPNs have been characterized by physicomechanical properties. The microcrystalline parameters such as crystal size (〈N〉), lattice disorder (g), surface (Ds) and volume (Dv) weighted crystal size of SIPNs have been estimated using wide angle X‐ray scattering studies, and quantification of the polymer network has been carried out on the basis of these parameters. The microstructural parameters have been established using Exponential, Lognormal, and Reinhold asymmetric column length distribution functions and the results are compiled. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 177–187, 2006  相似文献   

19.
Novel type of membranes based on poly(vinyl alcohol) crosslinked with tetraethoxysilane have been prepared by solution casting and solvent‐evaporation method. The membranes thus formed were characterized by Fourier transform infrared spectroscopy (FTIR) to study the chemical interactions, X‐ray diffraction (XRD), and thermogravimetry (TGA) to investigate morphological and thermal properties. Membranes were prepared in two different thicknesses (30 and 55 μm) and used for measuring the oxygen permeability under varying feed pressures (maintaining the desired pressure differential across the membrane) in the range from 1 to 50 kg/cm2 pressure. Oxygen permeability of the membranes ranged from 0.0091 to 1.6165 Barrer for 30 μm and 0.0305 to 0.1409 Barrer for 55‐μm thick membranes by increasing the feed pressures on the feed side. Except at 50 kg/cm2 pressure, the observed oxygen permeability values are almost close to total permeability. Membranes of this study could be useful as oxygen barriers for applications in food packaging industries. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 273–278, 2007  相似文献   

20.
Interpenetrating networks (IPNs) of polybutadiene‐based polyurethane (PU) and poly(methyl methacrylate) (PMMA) were synthesized. The effect of the incorporation of 2% glycidyl methacrylate (GMA) and 2‐hydroxyethyl methacrylate (2‐HEMA) on the thermal, mechanical, and morphological properties of IPNs was investigated. Both 2‐HEMA and GMA led to improvements in these properties. However, 2‐HEMA‐containing IPNs showed somewhat better tensile strength, elongation, and damping characteristics. The morphology of IPNs containing 2‐HEMA showed better mixing of the components. The improvement in the properties was observed for up to 40% PMMA in the IPNs. Differential scanning calorimetry thermograms showed the presence of three glass transitions. The third glass‐transition temperature was explained by possible grafting of methyl methacrylate onto PU. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1576–1585, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号