首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel amine‐terminated and organophosphorus‐containing compound m‐aminophenylene phenyl phosphine oxide oligomer (APPPOO) was synthesized and used as curing and flame‐retarding agent for epoxy resins. Its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance, and 31P nuclear magnetic resonance. The flame‐retardant properties, combusting performances, and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test, and thermogravimetric analysis. The EPO/APPPOO thermosets passed V‐1 rating with the thickness of 3.0 mm and the LOI value reached 34.8%. The thermosets could pass V‐2 rating when the thickness of the samples was 1.6 mm. The cone calorimeter test demonstrated that the parameters of EPO/APPPOO thermosets including heat release rate and total heat release significantly decreased compared with EPO/PDA thermosets. Scanning electron microscopy revealed that the incorporation of APPPOO into epoxy resins obviously accelerated the formation of the compact and stronger char layer to improve flame‐retardant properties of the cured epoxy resins during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After the water‐resistance test, EPO/APPPOO thermosets still remained excellent flame retardant and the water uptake was only 0.4%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41159.  相似文献   

2.
Epoxy resins containing both phosphorous and silicon were prepared via the fusion process of reacting a phosphorous diol and a silicon diol with a bisphenol‐A‐type epoxy. With various feeding ratios of the reactants, epoxy resins with different phosphorous and silicon contents were obtained. Through curing the epoxies with diaminodiphenylmethane, the cured epoxy resins exhibit tailored glass transition temperatures (159–77°C), good thermal stability (>320°C), and high char yields at 700°C under air atmosphere. The high char yield was demonstrated to come from the synergistic effect of phosphorous and silicon, where phosphorous enriches char formation and silicon protects the char from thermal degradation. Moreover, high flame retardancy of the epoxy resins was found by the high LOI value of 42.5. The relationship of the char yields at 700°C under air atmosphere (ρ) and the LOI values of the epoxy resins could be expressed as LOI = 0.62ρ + 19.2. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 404–411, 2003  相似文献   

3.
An aryl phosphinate dianhydride 1,4‐bis(phthalic anhydride‐4‐carbonyl)‐2‐(6‐oxido‐6H‐dibenz[c,e][1,2]‐oxaphosphorin‐6‐yl)‐phenylene ester (BPAODOPE) was synthesized and its structure was identified by FTIR and 1H‐NMR. BPAODOPE was used as hardener and flame retardant for preparing halogen‐free flame‐retarded epoxy resins when coupled with another curing agent. Thermal stability, morphologies of char layer, flame resistance and mechanical properties of flame‐retarded epoxy resins were investigated by thermogravimetric analysis, SEM, limiting oxygen index (LOI), UL‐94 test, tensile, and charpy impact test. The results showed that the novel BPAODOPE had a better flame resistance, the flame resistance and char yield of flame‐retarded epoxy resins increased with an increase of phosphorus content, tensile strength and impact strength of samples gradually decreased with the addition of BPAODOPE. The flame‐retarded sample with phosphorus contents of 1.75% showed best combination properties, LOI value was 29.3, and the vertical burning test reached UL‐94 V‐0 level, tensile strength and impact strength were 30.78 MPa and 3.53 kJ/m2, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
A novel, halogen‐free, phosphorus–nitrogen containing flame retardant 2[4‐(2,4,6‐Tris{4‐[(5,5‐dimethyl‐2‐oxo‐2λ5‐[1,3,2]dioxaphosphinan‐2‐yl)hydroxymethyl]phenoxy}‐(1,3,5)‐triazine (TNTP) was successfully synthesized in a three‐step process, and characterized by FTIR, NMR spectroscopy, mass spectra, and elemental analysis. A series of modified DGEBA epoxy resin with different loadings of TNTP were prepared and cured by 4,4‐diaminodiphenylsulfone (DDS). Thermal gravimetric analysis and vertical burning test (UL‐94) were used to evaluate the flame retardancy of TNTP on DGEBA epoxy resin. The results showed that TNTP had a great impact on flame retardancy. All modified thermosets by using TNTP exhibited higher Tg than pure DGEBA/DDS. The loading of TNTP at only 5.0 wt % could result in satisfied flame retardancy (UL‐94, V‐0) together with high char residue (27.3%) at 700°C. The addition of TNTP could dramatically enhance the flame retardancy of DGEBA epoxy resins, which was further confirmed by the analysis of the char residues by scanning electron microscopy and FTIR. Furthermore, no obviously negative effect was found on the Izod impact strength and flexural property of DGEBA epoxy resins when TNTP loading limited in 5.0 wt %. DGEBA/DDS containing 2.5 wt % TNTP could enhance Izod impact strength from 10.47 to 10.94 kJ m?2, and showed no appreciable effect on the flexural property (85.20 MPa) comparing with pure DGEBA/DDS (87.03 MPa). Results indicated that TNTP as a phosphorus–nitrogen synergistic intumescent flame retardant could be used for DGEBA epoxy resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41079.  相似文献   

5.
A novel phosphorus‐containing dicyclopentadiene novolac (DCPD‐DOPO) curing agent for epoxy resins, was prepared from 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and n‐butylated dicyclopentadiene phenolic resin (DCPD‐E). The chemical structure of the obtained DCPD‐DOPO was characterized with FTIR, 1H NMR and 31P NMR, and its molecular weight was determined by gel permeation chromatography. The flame retardancy and thermal properties of diglycidyl ether bisphenol A (DGEBA) epoxy resin cured with DCPD‐DOPO or the mixture of DCPD‐DOPO and bisphenol A‐formaldehyde Novolac resin 720 (NPEH720) were studied by limiting oxygen index (LOI), UL 94 vertical test and cone calorimeter (CCT), and differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. It is found that the DCPD‐DOPO cured epoxy resin possess a LOI value of 31.6% and achieves the UL 94 V‐0 rating, while its glass transition temperature (Tg) is a bit lower (133 °C). The Tg of epoxy resin cured by the mixture of DCPD‐DOPO and NPEH720 increases to 137 °C or above, and the UL 94 V‐0 rating can still be maintained although the LOI decreases slightly. The CCT test results demonstrated that the peak heat release rate and total heat release of the epoxy resin cured by the mixture of DCPD‐DOPO and NPEH720 decrease significantly compared with the values of the epoxy resin cured by NPEH720. Moreover, the curing reaction kinetics of the epoxy resin cured by DCPD‐DOPO, NPEH720 or their mixture was studied by DSC. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44599.  相似文献   

6.
A novel phosphonate flame retardant additive bis(2,6‐dimethyphenyl) phenylphosphonate (BDMPP) was synthesized from phenylphosphonic dichloride and 2,6‐dimethyl phenol, and its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H and 31P nuclear magnetic resonance. The prepared BDMPP and curing agent m‐phenylenediamine were blended into epoxy resins (EP) to prepare flame retardant EP thermosets. The effect of BDMPP on fire retardancy and thermal degradation behavior of EP/BDMPP thermosets was investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter and thermalgravimetric analysis (TGA). The morphologies of char residues of the EP thermosets were investigated by scanning electron microscopy (SEM) and the water resistant properties of thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the cured EP/14 wt % BDMPP composites with the phosphorus content of 1.11 wt % successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.8%. The TGA results indicated that the introduction of BDMPP promoted EP matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield at high temperature. The incorporation of BDMPP enhanced the mechanical properties and reduced the moisture absorption of EP thermosets. The morphological structures of char residue revealed that BDMPP benefited to the formation of a more compact and homogeneous char layer on the materials surface during burning, which prevented the heat transmission and diffusion, limit the production of combustible gases and then lead to the reduction of the heat release rate. After water resistance tests, EP/BDMPP thermosets still remained excellent flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42765.  相似文献   

7.
Two novel phosphorus‐rich prepolymers based on epoxy novolac and terephthaldialdehyde and potential flame retardants, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and 2,8‐dimethyl‐phenoxaphosphin‐10‐oxide (DPPO) were synthesised. The resultant flame‐retardant epoxy resins were cured with 4,4′‐diaminodiphenylmethane (DDM) and 4,4′‐diamino‐dicyclohexylmethane (PACM). Their flammability and burning behavior were characterised by UL 94 and LOI and compared with analogue prepolymers based on diethylphosphite (DEPP). The glass transition temperatures were determined by DSC measurements. Furthermore, the structures of two exemplary molecules based on p‐tolylaldehyde adducts were examined by XRD and NMR analysis to determine the possibilities of linking the two novel DOPO and DPPO derivatives to the backbone of the epoxy resin. Additionally, the char yields were determined by TG analysis and thermal desorption mass spectroscopy of the thermosets used and compared with each other to obtain more information about the possible mode of flame‐retardant action of the different phosphorus compounds. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Three novel aromatic phosphorylated diamines, i.e., bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl} pyromellitamic acid (AP), 4,4′‐oxo bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AB) and 4,4′‐hexafluoroisopropylidene‐bis N,N′‐{3‐[(3‐aminophenyl)methyl phosphinoyl] phenyl}phthalamic acid (AF) were synthesized and characterized. These amines were prepared by solution condensation reaction of bis(3‐aminophenyl)methyl phosphine oxide (BAP) with 1,2,4,5‐benzenetetracarboxylic acid anhydride (P)/3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride (B)/4,4′‐(hexafluoroisopropylidene)diphthalic acid anhydride (F), respectively. The structural characterization of amines was done by elemental analysis, DSC, TGA, 1H‐NMR, 13C‐NMR and FTIR. Amine equivalent weight was determined by the acetylation method. Curing of DGEBA in the presence of phosphorylated amines was studied by DSC and curing exotherm was in the temperature range of 195–267°C, whereas with conventional amine 4,4′‐diamino diphenyl sulphone (D) a broad exotherm in temperature range of 180–310°C was observed. Curing of DGEBA with a mixture of phosphorylated amines and D, resulted in a decrease in characteristic curing temperatures. The effect of phosphorus content on the char residue and thermal stability of epoxy resin cured isothermally in the presence of these amines was evaluated in nitrogen atmosphere. Char residue increased significantly with an increase in the phosphorus content of epoxy network. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2235–2242, 2002  相似文献   

9.
The flame‐retardant efficacy of phosphorus‐containing reactive amine hardeners for epoxy resins is well‐known; however their synthesis often applies hazardous, objectionable reagents. The aim of this work is to develop an effective synthesis method for the preparation of P‐containing amines, which can act as flame‐retardant crosslinking agent in epoxy resins. The syntheses and testing of an aliphatic and two aromatic amines are described: curing properties, glass transition temperature, thermal stability, and flame‐retardant performance of the amines are studied. On the basis of these results, the scaling‐up and the optimization of the synthesis of the phosphorus‐containing aliphatic amine hardener in ReactIR? in situ FTIR apparatus is discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40105.  相似文献   

10.
A phosphorus‐containing amine, bis(4‐aminophenoxy)phenyl phosphine oxide (BAPP), suitable for curing epoxy resins with improved fire performance was synthesized and characterized with Fourier transform infrared spectroscopy and nuclear magnetic resonance. The reactivity of the amino group was evaluated by differential scanning calorimetry of the epoxy–amine mixture and by proton nuclear magnetic resonance of the amino unit. With BAPP as a curing agent, a range of high‐functionality, aerospace epoxy resins were cured, and the dynamic kinetic parameters calculated from Kissinger's and Ozawa's models were compared with those from the more widely used amines. The thermal degradation properties of the phosphorus‐containing epoxy resins were studied by thermogravimetric analysis, the degradation activation energy was calculated, and a multistep thermal degradation process was observed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2093–2100, 2004  相似文献   

11.
A novel soluble phosphorus‐containing bismaleimide (BMI) monomer, bis(3‐maleimidophenyl)phenylphosphine oxide (BMIPO), was synthesized by the imidization of bis(3‐aminophenyl) phenylphosphine oxide, in which its structural characterization was identified with 1H‐NMR, 13C‐NMR, and Fourier transform infrared spectra. The BMIPO resin, with five‐membered imide rings and high phenyl density, was an excellent flame retardant with a high glass‐transition temperature (Tg), onset decomposition temperature, and limited oxygen index. In phosphorus‐containing BMI/epoxy/4,4′‐methylene dianiline (DDM)‐cured resins, homogeneous products were obtained from all proportions without phase separation. Because of the higher reactivity of BMIPO/DDM relative to that of 4,4′‐bismaleimidodiphenylmethane (BMIM)/DDM, the increase in the BMIPO/BMIM ratio in this blending resin increased the recrosslinking hazards of the postcuring stage and so lowered the Tg value and thermal stability. The thermal stability of the BMI/epoxy‐cured system was lower than that of the epoxy‐cured system because of the introduction of a phosphide group into BMIPO, whereas for the Tg value and flame retardancy, the former was significantly higher than the latter: the higher the BMIPO content in the blend, the higher the flame retardancy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2080–2089, 2002; DOI 10.1002/app.10607  相似文献   

12.
Two phosphorus‐containing heterocyclic flame retardants ‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and 2,8‐dimethyl‐phenoxaphosphin‐10‐oxide (DPPO) ‐ and their derivatives were characterized and incorporated in the backbone of epoxy novolac to obtain flame‐retardant epoxy resins. The structures and spectroscopic data including high‐resolution mass spectroscopy of these flame retardants were determined. Flame‐retardant epoxy resins with a phosphorus content of up to 2% based on heterocyclic DOPO and DPPO were cured with 4,4′‐diaminodiphenylmethane (DDM), and their features were examined by UL 94, LOI, and DSC. In this manner, high‐performance polymers with glass transition temperatures around 190°C and the UL 94 rating V0 were obtained. These polymers were compared with epoxy resins incorporating diphenyl phosphite and diphenyl phosphate, which are nonheterocyclic and do not pass the UL 94 test up to 2% phosphorus. DPPO has a similar flame retardancy like the commercially available DOPO. Furthermore, to explain the difference in the efficiency of the tested flame retardants, key experiments for the determination of the active species during the flame‐retarding process were performed and the PO radical was identified. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007.  相似文献   

13.
Two novel N-phosphorylated iminophosphoranes based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were evaluated as flame retardant (FR) additives. They were incorporated in two different epoxy resin systems (EP) based on diglycidyl ether of bisphenol A (DGEBA) and a novolac glycidyl ether (DEN438) both cured with dicyandiamide/fenuron (D/F). Decomposition temperatures and char yields of the cured EP were evaluated and compared to the corresponding neat EP as well as to structurally related compounds. The flame-retardant properties were investigated using the UL-94 V test and further verified with cone calorimetry. The N-phosphorylated iminophosphoranes with DOPO moieties exhibit distinctive flame-retardant effects in DGEBA/D/F and DEN438/D/F, depending on the chemical environment around the second phosphorus atom, even with low FR content. If the iminophosphorane is triphenyl phosphite based the mode of action is assigned to act mainly in the condensed phase hence being advantageous in DGEBA/D/F compared to the triphenylphosphine-based iminophosphorane, which in turn is more active in the gas phase resulting in superiority in DEN438/D/F.  相似文献   

14.
Blended hybrids based on silsesquioxane cyclohexyl trisilanol [STOH; i.e., (c‐C6H11)7Si7O9(OH)3] and epoxy resin 4,5‐epoxyhexyl‐1,2‐dimethyl acid diglycidyl ester (TDE‐85) were prepared with good compatibility of STOH up to 5 wt % with TDE‐85. The blended hybrid resins, with various STOH additions, were cured by 4,4′‐diaminodiphenylsulfone, and the curing reactions were investigated with differential scanning calorimetry. The incorporation of STOH increased the curing reaction of TDE‐85 for three active hydrogens existing in the STOH molecule. The storage moduli and glass‐transition temperatures of the cured hybrid resins were studied with dynamic mechanical analysis. The cured hybrids had higher storage moduli than the pure epoxy resins at lower temperatures and increased slightly even when the temperature was above the glass‐transition temperature. Two peaks appearing in tan δ curves indicated the block copolymer structure and two different glass‐transition temperatures of the cured hybrid resins. The thermal stability and flame retardancy of the cured hybrid resins were investigated with thermogravimetric analysis and limited oxygen index values, respectively. The results showed that introducing silsesquioxane–OH units into epoxy resins could improve the thermal stability and flame retardancy of the resins. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
新型含氮环氧树脂研究进展   总被引:2,自引:1,他引:2  
氮系阻燃剂具有高效、低毒(包括其分解产物)等优点,故已成为当今阻燃剂的发展方向。综述了氮系阻燃剂的特点及其阻燃机理,以及目前国内外对含氮环氧树脂(EP)和含氮阻燃固化剂的最新研究进展,并对其发展前景作了展望。  相似文献   

16.
Pentaerythritol diphosphonate melamine–dicyandiamide–formaldehyde resin salt, a novel macromolecular intumescent flame retardants (IFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus characterized by IR, NMR and element analysis. The flame retardancy and thermal behavior of a new IFR system for epoxy resin were investigated by LOI, UL‐94 test, TG, and IR. Activation energy for the decomposition of samples was obtained using Kissinger equation. 25% of weight of IFR were doped into epoxy resin to get 27.5 of LOI and UL 94 V‐0. The TG curves and IR spectra show that IFR decreases the initial decomposition temperature and the maximum weight loss rate of epoxy resin, and enhances the thermal stability of epoxy resin at high temperatures and char yield. The activation energy for epoxy resin containing IFR was decreased by 44.8 kJ/mol, which shows that IFR can catalyze decomposition of epoxy resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
9,10‐Dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and its derivatives have been widely used as effective flame retardants. In this study, 6‐((bis(2‐hydroxyethyl) amino) methyl)‐6H‐dibe‐nzo[c,e][1,2]oxaphosphinine‐6‐oxide (DHDOPO) was synthesized from DOPO, paraformaldehyde, and diethanolamine, and subsequently used as a reactant for synthesis of flame retarded alkyd resin (FR‐ALK). Thermogravimetric analysis (TGA) showed that DHDOPO had relatively high thermal stability and would not decompose at synthesis temperature of ALK. The thermal stability and flame retardancy of ALKs were improved by introduction of DHDOPO. As the mass fraction of phosphorus in FR‐ALK increased the decomposition temperature, the char yield in TGA experiments, the fire residue, and time to ignition in cone calorimeter tests increased, and peak heat release rate (PHRR) and total heat release (THR) decreased. Compared with the non‐flame retarded ALK the PHRR and THR values of FR‐ALK containing 2.5 wt % phosphorus decreased, respectively, by 43.1% and 58.5%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45643.  相似文献   

18.
Tri(acryloyloxyethyl)phosphate (TAEP) and di(acryloyloxyethyl)ethyl phosphate (DAEEP) were used as reactive‐type flame‐retardant monomers along with commercial epoxy acrylate and polyurethane acrylate oligomers in ultraviolet (UV)‐curable resins. The concentrations of the monomers were varied from 17 to 50 wt %. The addition of the monomers greatly reduced the viscosity of the oligomers and increased the photopolymerization rates of the resins. The flame retardancy and thermal degradation behavior of the UV‐cured films were investigated with the limiting oxygen index (LOI) and thermogravimetric analysis. The results showed that the thermal stability at high temperatures greater than 400°C and the LOI values of the UV‐cured resins, especially those containing epoxy acrylate, were largely improved by the addition of the monomers. The dynamic mechanical thermal properties of the UV‐cured films were also measured. The results showed that the crosslink density increased along with the concentrations of the monomers. However, the glass‐transition temperature decreased with an increasing concentration of DAEEP because of the reduction in the rigidity of the cured films, whereas the glass‐transition temperature increased with the concentration of TAEP because of the higher crosslink density of the cured films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 185–194, 2005  相似文献   

19.
Two kinds of phosphonate‐containing bismaleimide (BMI) monomers, phenyl‐(4,4′‐bismaleimidophenyl) phosphonate and ethyl‐(4,4′‐bismaleimido‐phenyl) phosphonate, were synthesized and added through blending to two epoxy systems for the study of their applications as reactive flame retardants. The thermal behaviors of the BMI monomers in both kinds of epoxy systems, bisphenol and phenol–novolac, were similar. An increase in the BMI contents increased the storage modulus and glass‐transition temperature but slightly reduced the mechanical strength of the epoxy blends. The pyrolysis models of both BMI blends in the two epoxy systems were quite alike. Although the initial pyrolysis temperatures of all the blending systems gradually decreased as the phosphorous content increased, the flame retardancy of all the phosphonate‐containing epoxy systems was promoted significantly by increasing contents of BMI. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2375–2386, 2004  相似文献   

20.
The current study was designed to investigate the effects of expandable graphite (EG) on fire protection properties of intumescent fire-retardant coating for steel structures. Several formulations of intumescent coating were prepared and tested according to ISO 834 for char expansion. The chars were found without cracks and bonded with the steel substrate. The results showed that the coating slowly degraded during the test and char remained in contact with vertically tested coated substrate. The coated substrates were also tested for weather resistance using humid and ultraviolet environment. The char was characterized by using FESEM, XRD, FTIR, TGA, and XPS analysis. FESEM examined char morphology of the coatings after furnace fire test. XRD and FTIR showed the presence of graphite, borophosphate; boron oxide and sassolite in the char. TGA and DTGA results disclosed that EG improved the residual mass of coating. XPS analysis showed the percentages of carbon and oxygen are 48.50 and 43.45 in char of formulation with 12.8% EG. The results of weathering test coatings showed decreased in char expansion because of a humidity and UV light. The formulation with 9.8% EG showed the maximum char expansion and high residual mass among the formulations investigated in this study. The weathering tested coated samples showed their capability of fire protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号