首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graft copolymerization of epoxy‐terminated poly(dimethylsiloxane) (PDMS) onto chitosan was reacted without using a catalyst. pH‐sensitive hydrogels were obtained that are based on two different components: a natural polymer and a synthetic polymer. These PDMS substitutents provide the basis for hydrophobic interactions that contribute to the formation of hydrogels. Various graft hydrogels were prepared from different weight ratios of chitosan and PDMS. Swelling behavior of these hydrogels was studied by immersion of the gels in various buffer solution. Photocrosslinked hydrogels exhibited a high equilibrium water content (EWC). Particularly, the sample CP31 of the highest chitosan–PDMS weight ratio showed the highest EWC in time‐dependent, temperature‐dependent, and pH‐dependent swelling behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2661–2666, 2002  相似文献   

2.
A temperature‐ and pH‐dependent hydrogel was studied with interpenetrating polymer network (IPN) hydrogels constructed with water‐insoluble chitosan and polyallylamine. Various IPNs were prepared from different weight ratios of chitosan–polyallylamine. Crosslinked‐IPN hydrogels exhibited relatively high equilibrium water content (EWC) in the range 80–83%. The EWC of IPN hydrogels depended on pH and the amount of complex, which is the content of chitosan and polyallylamine. The differential scanning calorimeter (DSC) thermogram of fully swollen IPN hydrogels appeared between 3 to 4 °C. The IPNs exhibited two glass‐transition temperatures (Tgs), indicating the presence of phase separation in the IPNs as exhibited by dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 498–503, 2002  相似文献   

3.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Semi‐interpenetrating polymer networks (semi‐IPNs), as polymer hydrogels composed of chitosan and poly(hydroxyethyl methacrylate) (PHEMA), exhibiting electrical‐sensitive behavior, were prepared. The swelling behavior of the chitosan/PHEMA hydrogels was studied by immersing the gels in various concentrations of aqueous NaCl solution. The electrical responses of the semi‐IPN hydrogel, in applied electric fields, were also investigated. When the semi‐IPN hydrogels were swollen, where one electrode was placed in contact with the gel and the other fixed 30 mm apart from one, they exhibited bending behavior on the application of an electric field on a contact system. The electroresponsive behavior of the present semi‐IPN was also affected by the electrolyte concentration of the external solution. The semi‐IPN also showed various degrees of increased bending behavior depending on the electric stimulus. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 915–919, 2004  相似文献   

5.
An interpenetrating polymer network (IPN) hydrogel composed of poly(vinyl alcohol) (PVA) and chitosan exhibited electric‐sensitive behavior. The PVA/chitosan IPN hydrogel was synthesized by an ultraviolet (UV) irradiation method that is used in several biomedical and industrial fields. The swelling behavior of the PVA/chitosan IPN hydrogel was studied by immersion of the gel in NaCl aqueous solutions at various concentrations. The swelling ratio decreased with increasing concentration of NaCl solution. The stimuli response of the IPN hydrogel in electric fields was also investigated. When a swollen PVA/chitosan IPN was placed between a pair of electrodes, the IPN exhibited bending behavior in response to the applied electric field. The bending angle and the bending speed of the PVA/chitosan IPN increased with increasing applied voltage and concentration of NaCl aqueous solution. The PVA/chitosan IPN also showed stepwise bending behavior depending on the electric stimulus. In addition, thermal properties of PVA/chitosan IPN were investigated by differential scanning calorimetry (DSC) and dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2285–2289, 2002  相似文献   

6.
Temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels were successfully synthesized by using poly(ethylene oxide) as the interpenetrating agent. The newly prepared semi‐interpenetrating polymer network (semi‐IPN) hydrogels exhibited much better properties as temperature‐sensitive polymers than they did in the past. Characterizations of the IPN hydrogels were investigated using a swelling experiment, FTIR spectroscopy, and differential scanning calorimetry (DSC). Semi‐IPN hydrogels exhibited a relatively high temperature dependent swelling ratio in the range of 23–28 at room temperature. DSC was used for the determination of the lower critical solution temperature of the semi‐IPN hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3032–3036, 2003  相似文献   

7.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

8.
Semi‐interpenetrating polymer network (IPN) hydrogels, with acrylic acid (AA) and poly(diallydimethylammonium chloride) (PDMDAAC), were constructed by a sequential IPN method. The characterizations of the IPN hydrogels were investigated by FTIR, DTA, and swelling tests under various conditions. The prepared semi‐IPN hydrogels exhibited relatively high swelling capacity, in the range of 477–630 g/g at 25°C. The results show that the swelling capacity of AA/PDMDAAC semi‐IPN hydrogels was pH and temperature dependent. Swelling behaviors were also studied in the different salt solutions. Swelling kinetic parameters are given. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 345–350, 2007  相似文献   

9.
Semi‐interpenetrating polymer networks (semi‐IPNs), composed of chitosan and poly(hydroxy ethyl methacrylate) hydrogels, were prepared and the effects of various pH, temperatures, and an electric‐field on the swollen hydrogels were investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. Semi‐IPN hydrogels exhibited relatively high swelling ratios, 150~350%. The swelling ratio increased when the pH of the buffer was below pH 7 as a result of the dissociation of ionic bonds. Semi‐IPN hydrogels showed electroresponsiveness by shrinking when an electric field was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 86–92, 2005  相似文献   

10.
Semi‐interpenetrating networks (Semi‐IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly(vinyl alcohol) (PVA) by the sol‐gel process in this study. The characterization of the PDMS/PVA semi‐IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (? OH) and hydrophobic (Si? (CH3)2) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi‐IPNs prepared, which led to a maximum equilibrium water content of ~ 14 wt % without a loss in the ability to swell less polar solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A new strategy was used to prepare a semi‐interpenetrating polymer network (semi‐IPN)–like poly(N‐isopropylacrylamide) (PNIPAAm) polymeric hydrogel, consisting of either low (2300) or high (33,000) molecular weight linear PNIPAAm chains and the crosslinked PNIPAAm network. The properties of the resulting PNIPAAm hydrogels were characterized by DSC and SEM as well as their swelling ratios at various temperatures, the deswelling in hot water (48°C), and the oscillating shrinking–swelling properties within small temperature cycles. It was found that the deswelling rate of these semi‐IPN–like PNIPAAm hydrogels was improved if the molecular weight and/or composition of the linear PNIPAAm chains within the semi‐IPN–like PNIPAAm hydrogels were increased. This improved deswelling rate was attributed to the fast response nature of the linear PNIPAAm chains and the increased pore number in the matrix network, which provided numerous water channels for the water to diffuse out during the deswelling process at a temperature above the lower critical solution temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1935–1941, 2003  相似文献   

12.
Semi‐ and full‐interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) and polyethyleneimine (PEI) were prepared to investigate the bending behavior under the electric response. To find out the characteristics of the hydrogel in the medium, swelling ratio, and rate and water state of the hydrogels were measured. The swelling ratio of the semi‐IPN hydrogels increased with PEI content in the matrix, whereas that of full‐IPN hydrogels dramatically decrease with increase of PEI contents in the hydrogels. In the water state of hydrogel, the bound water and free water of semi‐IPN hydrogels increased with PEI weight ratio. The full‐IPN hydrogels show the lower free water content in comparison with the semi‐IPN hydrogel. The IPN hydrogels exhibited bending angle change in response to external stimulus such as voltage, the bending angle increased with PEI concentration. In addition, the repeated bending behaviors according to the magnitude of the applied electric field revealed that the bending angle is reversible without collapse of formation of hydrogel in all samples. Thus, the hydrogels will be useful as novel modulation systems in the field of artificial organ and matrix for drug delivery. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) (PVA) and monomer, N‐isopropylacrylamide (NIPAAm), diallyldimethylammonium chloride (DADMAC), or methacrylic acid (MAA) were prepared by using the sequential‐IPN method. The equilibrium swelling ratios of PVA/NIPAAm (VANP), PVA/DADMAC (VADC), and PVA/MAA (VAMA) are 412, 370, and 297 at 25°C, respectively. VANP had the highest swelling ratio in time‐dependent swelling behavior, whereas the swelling ratio of VAMA had the lowest. The n values of VANP, VADC, and VAMA are 0.72, 0.81, and 0.96, respectively. Transport of all IPN hydrogels is anomalous and their transport mechanisms are dominated by a combination of diffusion‐controlled and relaxation‐controlled systems. VAMA has the highest activation energy and VANP has the lowest activation energy. The values of all IPN hydrogels are from 4.66 to 16.49 kJ/mol, which proves that all IPN hydrogels are hydrophilic. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3310–3313, 2003  相似文献   

14.
Amphiphilic semi‐interpenetrating polymer networks (semi‐IPN) hydrogels were prepared by a sequential‐IPN method by acrylic acid graft copolymerization into cationic starch in mild aqueous media of poly(dimethyldiallylammonium chloride). Some main factors were investigated to evaluate the swelling of hydrogels, and the network parameters Mc were given accordingly to elaborate the interaction between polymers. The chemical structure of the resulting hydrogel was confirmed using Fourier transform infrared spectroscopy. The cationic starch‐based semi‐IPN hydrogels achieved a high swelling capacity of 1070 g/g in deionized water and 94 g/g in 0.9 wt % NaCl solution, respectively) and high compressive stress in a high water content. Besides, a different pH‐dependent behavior was found for this semi‐IPN hydrogel. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Amino semitelechelic poly(N‐isopropylacrylamide) (PNIPAAm) was prepared by radical polymerization with aminoethanethiol hydrochloride as a chain‐transfer agent. Semi‐interpenetrating polymer network (semi‐IPN) hydrogels, composed of alginate and amine‐terminated PNIPAAm, were prepared by crosslinking with calcium chloride. From the swelling behaviors of semi‐IPNs at various pH's and Fourier transform infrared spectra at high temperatures, the formation of a polyelectrolyte complex was confirmed from the reaction between carboxyl groups in alginate and amino groups in modified PNIPAAm. Semi‐IPN hydrogels reached an equilibrium swelling state within 24 h. The water state in hydrogels, investigated by differential scanning calorimetry, showed that sample CAN55 [alginate/PNIPAAm (w/w) = 50/50] exhibited the lowest equilibrium water content and free water content among the hydrogels tested, which was attributed to its more compact structure compared to other samples and the high content of interchain bonding within the hydrogels. Alginate/PNIPAAm semi‐IPN hydrogels exhibited a reasonable sensitivity to the temperature, pH, and ionic strength of swelling medium. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1128–1139, 2002  相似文献   

16.
In this work, semi‐interpenetrating polymer network (s‐IPN) hydrogels of poly(vinyl alcohol) (PVA) with different contents of water‐soluble sulfonated polyester (PES) were obtained by freezing and thawing cycles. The samples were characterized by positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC). PALS was used to determine the average free volume radius through lifetime measures of the ortho‐positronium (o‐Ps). Degree of crystallinity of the PVA/PES hydrogels was evaluated using the melting enthalpy ratios between the samples and the 100% crystalline PVA. The results show that an increase on the PES content leads to a decrease on the degree of crystallinity of the samples, reflecting an increase on the lifetimes (τ3). These structural changes could be interpreted as a result of different polymer‐polymer interactions between PVA and PES in the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

18.
Temperature‐ and pH‐responsive semi‐interpenetrating polymer network (semi‐IPN) hydrogels constructed with chitosan and polyacrylonitrile (PAN) were studied. The characterizations of semi‐IPN hydrogels were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). IPN hydrogels exhibited a relatively high swelling ratio, 23.31%–145.20% at room temperature. The swelling ratio of hydrogels depends on pH and temperature. DSC was used to determine the amount of free water in IPN hydrogels. The amount of free water increased with increasing chitosan content in the semi‐IPN hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2011–2015, 2003  相似文献   

19.
The swelling behavior of novel pH- and temperature-sensitive interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) in water was investigated. The PVA/PAAc IPN hydrogels were synthesized by UV irradiation, followed by a repetitive freezing and thawing process by which PVA hydrogel networks were formed inside of cross-linked PAAc chains. The swelling behaviors of these IPNs were analyzed in buffer solution at various pH and temperature ranges. Swelling ratios of all IPNs were relatively high, and they showed reasonable sensitivity to both pH and temperature. Hydrogels showed both the positive and negative swelling behaviors depending on PAAc content. IPN46 showed the positive temperature-sensitive swelling behaviors and its stepwise changes in swelling ratio was about 1.8 and 2.0 obtained between 25 and 45°C at pH 7, and between pH 4 and 7 at 35°C, respectively. The positive temperature dependence is attributed to the formation and dissociation of hydrogen bonding complexes between PVA and PAAc. These IPNs are expected to show a pH- and temperature-sensitive drug release according to the stepwise behavior at this temperature region. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Various pH-sensitive sequential interpenetrating polymer network (IPN) hydrogels were prepared by introducing poly (vinyl alcohol) (PVA) hydrogel into Poly (aspartic acid) (PASP) hydrogel by freeze-thawing treatment to obtain a novel drug delivery system to the intestine. The structure and the morphologies of the prepared hydrogels were studied by Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal behavior and crystallinity of the hydrogels were characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Their pH-sensitive properties moreover were studied and the results revealed that both PASP hydrogel and IPN hydrogels exhibited excellent pH-sensitivity. Furthermore, the controlled drug release properties of the hydrogels were also evaluated and results indicated that by increasing the PVA fraction in the IPN hydrogel, the release of Naproxen sodium was improved. These results show that the IPN hydrogels could be a suitable carrier for site-specific drug delivery in the intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号