首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of coupling agents and filler particle size on melt rheology of poly(phenylene sulfide)-bonded neodymium-iron-boron (Nd-Fe-B) alloy magnets was studied with oscillatory flow experiments to accelerate efforts to optimize their processing. The minimum viscosity of the polymer-bonded magnets near 290°C was obtained with Nd Fe B fillers (106–150 particle size range) that were coupled with a silane coupling agent. All the samples tested followed power-law fluid flow behavior. Morphological and dynamic mechanical analysis of the samples showed that the beneficial function of the coupling agent may be ascribed to enhanced wetting of the magnetic Nd Fe B powders by the polymer, improving the processability of the polymer bonded magnets.  相似文献   

2.
The crystallization behavior of neat PPS and PPS in blends with PMR‐POI prepared by melt mixing were investigated by differential scanning calorimetry (DSC). It was found that POI was an effective nucleation agent of the crystallization for PPS. The enthalpy of crystallization of PPS in the blends increased compared with that of neat PPS. During isothermal crystallization from melt, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of POI causes an increase in the overall crystallization rate of PPS; it also changed the mechanism of nucleation of the PHB crystals from homogeneous nucleation to heterogeneous nucleation. The equilibrium melting temperature of PPS and PPS/POI blends were determined. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PPS in the composite is due to the decrease in surface energy of the extremity surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 436–442, 2002  相似文献   

3.
The present work deals with the study of the effect of the interfaces on the thermal and mechanical behavior of a composite based on polypropylene and calcium carbonate that was treated with bifunctional coupling agents. In order to enhance the coupling of the filler and the polymer, a compatibilizer, namely maleic anhydride grafted polypropylene, was used. The synthesis of the compatibilizer was carried out in a brabender mixer at 180°C. The grafting reaction was assessed by two techniques that were titration of the anhydride function and identification by means of Fourier transform infrared spectroscopy. It was found that the resulting structure depends much on the nature of the coupling agent. The use of the treated calcium carbonate had a great effect on the thermal and mechanical properties of the composites. It resulted in an important increase in both the modulus and tensile stress. The extent of reinforcement obtained with the zirconate coupling agent was higher than that of the composite containing the filler treated with the silane coupling agents. The decrease noted in the strain could reflect an important coupling between the filler and the polymer. This coupling was favored by a complex interfacial structure depending on the individual structure of each coupling agent. The thermal analysis showed that the fusion temperature and the crystallization temperature were not affected by the presence of the filler nor the coupling agents. However, the percentage crystallinity varied with both the amount of the filler and the type of the coupling agent.  相似文献   

4.
Sustainable composites were developed from fly ash (FA) and recycled polypropylene (R) with lauric acid (LA) as the coupling agent. The FA particles were surface‐coated with 1, 2, 3, and 5 wt % LA, and the coating on the FA particles was verified by transmission electron microscopy and Fourier transform infrared spectroscopy. R and LA‐coated FA particles were melt‐mixed in a 1:1 weight ratio to achieve a high‐filler‐loaded composite. The flexural, impact, nanoindentation, and fracture surface analyses were carried out to examine the properties of the composites. The flexural strength and modulus values increased in the 2 wt % LA‐coated FA/R composites by 6 and 50%, respectively, compared to the values of the uncoated FA/R composites, whereas the impact strength increased considerably by 119% in the 1 wt % LA‐coated composites. Nanoindentation tests also showed an increase in the mechanical properties in the case of the 1 and 2 wt % LA‐coated composites in comparison to the uncoated ones. Fracture surface studies done by scanning electron microscopy revealed improved interfacial interactions between the filler and matrix in the presence of the LA coupling agent. X‐ray diffraction (XRD) studies indicated reorientations of the polymer chains in the presence of different concentrations of the LA coupling agent; this resulted into different crystallinities and crystallite sizes. Differential scanning calorimetry showed a significant difference in the crystalline peaks of the composites, and this corroborated well with the XRD observations. LA, thus, significantly influenced the structural properties of the composites, and this, in turn, influenced their mechanical and thermal properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41586.  相似文献   

5.
Polyhedral oligomeric silsesquioxane (POSS) additives have been shown to increase melt‐flow and crystallization in thermoplastics. In this study, the effect of incorporation of trisilanolphenyl‐POSS molecules in polyphenylenesulfide (PPS) and polyetheretherketone (PEEK) on rheology, crystallization kinetics, and thermal and mechanical properties was evaluated. Parallel plate rheometry revealed a reduction in the viscosity of PPS and PEEK with the addition of POSS. The magnitude and concentration dependence of rheological modification were shown to depend on the polymer structure and POSS solubility. Isothermal crystallization kinetics were analyzed using the Avrami model and it was found that the addition of POSS accelerated the crystallization rate of PPS blends with no significant effect on PEEK blends. Interestingly, no statistical difference in degradation temperature, tensile modulus, or tensile strength of PPS or PEEK blends was observed. The findings indicate the potential for improvements in melt viscosity and crystallization of high temperature thermoplastics with tailored POSS/polymer interactions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44462.  相似文献   

6.
The crystallization behavior of poly(phenylene sulfide) (PPS) has been examined by differential scanning calorimetry as a function of melt temperature, residence time in the melt, and the presence of a liquid crystal polymer. The results suggest that the thermal history of the sample plays an important role in determining the crystallization kinetics. Short residence times at low melt temperatures and high melt temperatures alone resulted in a low value for the Avrami exponent n. The former effect was ascribed to incomplete melting of the polymer while the latter effect was attributed to thermal degradation. Blending a liquid crystal polymer, Vectra A950, with PPS had only a minor effect on the crystallization behavior.  相似文献   

7.
Tensile and impact properties of Neem bark flour (BF) containing high density polyethylene (HDPE) composites were studied at 0–0.26 volume fraction of filler. Tensile modulus and strength and breaking elongation decreased with increase in BF concentration. The decrease in tensile modulus and strength was attributed to the decrease in crystallinity of the polymer compared to the imposed mechanical restraint by the BF. Analysis of tensile strength data indicated formation of stress concentration in the interphase. Because of this stress concentration and the mechanical restraint, the elongation‐at‐break and Izod impact strength decreased. Use of a coupling agent, HDPE‐g‐MAH, brings about enhanced phase adhesion, increasing the tensile modulus and strength. Enhanced adhesion marginally lowers composite ductility at higher filler contents and aids stress transfer increasing the Izod impact strength inappreciably. Scanning electron microscopic studies indicated better dispersion of BF particles and enhanced interphase adhesion in presence of the coupling agent. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
Composites of polypropylene—CaCO3 coated with isopropoxy triisostearoyl titanate have been prepared on Buss Ko-Kneader. These composites have been evaluated for mechanical properties, melt index, dispersion, and adhesion of polymer to filler using the scanning electron microscope. Calcium carbonate being a platelike substance with low aspect ratio results in composites having inferior tensile properties but superior impact characteristics. Uniform dispersion of filler in the composite and long alkyl chains of the coupling agent provide additional advantages such as improved melt index, higher tensile elongation, and better optical properties.  相似文献   

9.
The mechanical properties of mineral-filled polypropylene (PP) are determined not only by the size, shape and modulus of the filler particles, but also by microstructure. For example, poor impact strength is correlated with a high capacity for nucleation of crystallization. In the present study, optical microscopy has been used to measure the growth rate of spherulites in PP. In tandem with this, isothermal d.s.c. measurements have been made of the crystallization of the PP filled with talc, calcium carbonate and stearate-coated carbonate at different loading levels. Computer simulation of spherulite growth has been used to derive the number of nucleating sites per unit volume of polymer and, using surface area measurements, the number of sites per unit area of mineral surface was obtained. Values for talc were, as expected, considerably higher than those for carbonate (and especially coated carbonate) fillers. The presence of filler affects not only the nucleation and kinetics of the crystallization process but also the crystallinity and orientation indices and the proportion of β-phase crystallites present. The connection between these factors and impact strength is discussed. It is concluded that impact properties are determined by inter alia crack pinning and blocking by filler particles, stress concentrations at the edges of the filler particles, and the nucleating ability of the filler.  相似文献   

10.
The effects of thermally crosslinkable polymerization of monomer reactant–polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2906–2914, 2002; DOI 10.1002/app.10287  相似文献   

11.
We studied the effect of liquid crystal polymer (LCP) and surface modification of neodymium‐iron‐boron (Nd‐Fe‐B) magnetic alloy on the magneto‐mechanical behavior of poly (phenylene sulfide) (PPS) bonded Nd‐Fe‐B magnets to accelerate efforts to develop useful thermoplastic magnets with optimal performance. The results indicate that blending the LCP with PPS provides the required balance of properties for the targeted applications. These properties include superior magneto‐mechanical performance at elevated temperatures, minimal melt viscosity at optimal LCP volume fraction, high stiffness, and improved dimensional stability, making the thermoplastic magnets suitable for use at elevated temperatures and in chemically corrosive environments where commercial rare earth alloy magnets are not useable. Enhanced wetting of the magnetic Nd‐Fe‐B powders by the polymers, formation of reinforcing LCP domains, and interactions between the polymers and the magnetic powders are thought to be responsible for the beneficial function of the LCP and Nd‐Fe‐B surface modifier in the PPS bonded Nd‐Fe‐B magnets.  相似文献   

12.
Crystallization kinetics of polycaprolactone (PCL) filled with TiO2-based particles (TiX) was shown to depend on the TiX particle type and concentration, which were associated with a slight polymer matrix degradation. The partially degraded, shorter, and more mobile polymer chains increased the overall crystallization rate at the initial stage of crystallization, while at the later stages, the non-nucleating TiX particles acted as a sterical hindrance, slowing down the crystallization process. The PCL/TiX composites were prepared by melt-mixing and contained 2.5 and 5 wt% of the filler. The investigated TiX particles included isometric anatase microparticles (mTiO2) and titanate nanotubes with high-aspect ratio (TiNT). Light and electron microscopy showed very homogeneous dispersion of the mTiO2 particles in the PCL matrix, while the TiNT formed large agglomerates. In situ polarized light microscopy displayed faster isothermal crystallization of all PCL/TiX composites, but the micrographs indicated that the TiX particles did not act as nucleation centres. Isothermal DSC experiments, evaluated in terms of Avrami theory, confirmed the PLM results and showed that the overall rate of isothermal crystallization increased in the following order: PCL <PCL/TiNT <PCL/mTiO2. Non-isothermal DSC and rheological measurements revealed the correlation between the crystallization rate and the polymer matrix degradation—the well-dispersed mTiO2 particles with high specific surface caused the highest PCL degradation and, consequently, the earliest start of non-isothermal crystallization as well as the fastest isothermal crystallization. Microindentation hardness measurements confirmed that the partial degradation of the polymer matrix did not have a significant impact on the mechanical performance of PCL/mTiO2 composites.  相似文献   

13.
Dilatation of specimens is measured during tensile tests to investigate the mechanical response of particulate-filled amorphous networks in the glassy state. The effects of particle size, volume fraction of filler, coupling agents, and crosslink density of the matrix on the mechanical-dilatational behavior are studied on model composites of glass-bead-filled polyurethanes. It is found that the stress-strain response of composites with untreated glass beads shows nonlinearity and subsequent yielding due to dewetting of particles from the matrix. In contrast, composites containing particles coated with a comupling agent fracture in a brittle manner, showing no significant nonlinearity and dewetting. Coated particles provide a higher tensile strength, but a lower strain at fracture, than uncoated particles. The volume fraction of the filler has an effect on Young's modulus, which is independent of the degree of coupling between the matrix and the filler. Tensile strength and strain at break decrease with increasing filler content for coated and uncoated particles. No strong effect of particle size is observed on either the tensile modulus or the dilatational behavior in the 25 μm to 160 μm diameter range. However, strain at break increases with decreasing particle size. When the accompanying yield phenomena shift to smaller strains, and a transition to brittle fracture takes place at high crosslink densities.  相似文献   

14.
The crystallization kinetics of poly(ethylene terephthalate) was measured under isothermal conditions by DSC in the presence of various fillers and with varying filler concentrations. The fillers used were carbon, titanium dioxide, glass fiber, and calcium carbonate. The kinetics was calculated using the slope of the crystallization vs. time plot, the times for 10% and 50% reduced crystallization, and the Avrami equation. Activation energies were determined from measurements under different isothermal temperatures. The fillers caused athermal nucleation to be inhibited as shown by the increased values of the Avrami exponent, n. Interactions between the polyester and filler were interpreted to reduce the mobility of the polymer in the melt. This decreased the rate of crystallization and increased its activation energy. The order of the filler effect in reducing crystallization was the following: no filler < carbon < titanium dioxide < glass fiber < calcium carbonate. The concentrations of filler were above those typically used for nucleation and more in the range expected for reinforcement or dilution of the polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Interfacial crystallization of polymer on the surface of filler not only offers crystallography interest but also has a potential to improve the interfacial interaction, which is a key for the preparation of high-performance polymer/filler composites. In this work, a new method is proposed to improve the interfacial crystallization between semi-crystalline polymer and glass fiber (GF) by introducing graphene oxide (GO) to the surface of amorphous GF. The coating of GO on GF surface is realized via electrostatic self-assembling of the oppositely charged GO and amino coupling agent modified GF (GF-NH2). After the thermal reduction of the coated GO (RGO), RGO coated GF (GF-RGO) is obtained. The interfacial crystallization of isotactic polypropylene (iPP) and poly(l-lactide) (PLLA) on the surface of raw GF, GF-NH2, and GF-RGO are investigated using Polarized light microscope (PLM). It is found that raw GF and GF-NH2 has almost no nucleation ability on the polymers crystallization. However, transcrystalline structure can be successfully induced at the polymers/GF-RGO interface, indicating a significantly improved nucleation ability of GF-RGO for polymer crystallization. This work could provide a new way to control interfacial crystallization, thus the interfacial adhesion of polymer/filler composites, and could also find a new application for GO as well.  相似文献   

16.
In this article, we report on recent investigations on filled natural rubber. These investigations include a mechanical characterization as well as a molecular analysis based on measurements of chain orientation. It is demonstrated that at intermediate strains, the increase in the moduli can be explained by the inclusion of rigid particles in the soft matrix and from molecular interactions between the rubber and the filler. These interactions can be evaluated by equilibrium swelling and by orientational measurements. With regard to the unfilled formulation, carbon black– and silanized‐filled natural rubber exhibit increases in the cross‐linking density ascribed to filler‐polymer links, whereas a large decrease in the orientational level, evidenced by birefringence and by infrared dichroism, is observed when silica is added without any coupling agent. Finally, two specific effects—the Payne and Mullins effects, both related to energy dissipation phenomena—are discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2301–2316, 2002  相似文献   

17.
A composite of aluminum nitride (AlN) particles dispersed around polystyrene matrix particles was synthesized in this study. The purpose of using this microstructure is to improve the thermal properties of a polymer at a low filler content with a minimal increase in the dielectric constant of the polymer composite to meet the material requirements for electronic packaging. The dynamic mechanical properties of this type of polystyrene–AlN composite were investigated here. The experimental results indicate that the dynamic mechanical property of the polystyrene–AlN composite is a function of the polystyrene particle size, AlN filler concentration, and temperature under this dispersion state. The addition of an AlN concentration into polystyrene increases both the storage modulus and the α‐transition temperature. The smaller polystyrene particle size gives a higher storage modulus and damping peak. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1348–1353, 2000  相似文献   

18.
The melt rheology of blends of a liquid crystalline polymer (LCP) and poly(phenylene sulfide) (PPS) and their composites with ferromagnetic Nd‐Fe‐B particles (MQP) was studied. We investigated the effects of LCP concentration, Nd‐Fe‐B particle volume fraction and size, distribution, and shear rate on the rheological properties of these composites. Enthalpy of fusion changes that were observed resulted from the addition of the LCP and Nd‐Fe‐B particles to the polymer blends/composites. The shear rate and frequency dependencies of the materials revealed a viscosity reduction at low (1–3 wt%) and moderate (10–15 wt%) LCP concentrations, and strong effects on the shear‐thinning characteristics of the melt. The suspensions of polydispersed Nd‐Fe‐B particle configurations in PPS that were of lower size ratios gave better processability, which is contradictory to previously reported behavior of suspensions containing spherical particles. Specifically, the compositions with unimodal and a bimodal distribution of Nd‐Fe‐B particles gave the lowest viscosities. The experimental data were correlated with semi‐empirical viscosity model equations of Maron‐Pierce, Krieger‐Dougherty, Eilers, and Thomas and were found to be consistent with the data. The maximum packing fraction, ϕm, of the MQP particles was estimated to be within the range of 0.78 ϕ ≤m ≤ 1.0 through graphical and parametric evaluation methods.  相似文献   

19.
Milled sunflower husk was added to three types of polyolefins (polypropylene, low-density and high-density polyethylene) in a wide composition range. Composite series were prepared with or without maleic anhydride-grafted polyolefin coupling agents to investigate the effect of coupling on the mechanical properties and micromechanical deformation processes. Several independent approaches were followed to estimate interfacial adhesion qualitatively and quantitatively, respectively. The results show that interfacial adhesion is significantly improved in the presence of a coupling agent. As a result, coupling changes the dominant deformation process from matrix/filler debonding to the fracture of sunflower husk particles. Milled sunflower husk can enhance significantly the modulus of polyolefins; however, elongation-at-break values are very small, especially at larger filler content, which represents the largest obstacle of practical application.  相似文献   

20.
采用DSC、DMA等测试手段研究了PPS/CaCO_3复合材料的结晶行为和动态力学性能。通过对冷结晶峰值温度T_(?)、半结晶时间t_(1/2)、结晶焓△H_c等参数的分析,结果表明:CaCO_3的添加阻碍了PPS分子链的运动,导致了体系结晶速率减小,结晶能力下降,且阻碍作用在CaCO_3含量为3%时最为明显。同时,通过DMA测试,表明CaCO_3的添加使PPS的储能模量和损耗模量都有所增加,其中损耗模量也在CaCO_3含量为3%时达到最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号