首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of Monsanto rheometic studies and measurements of physical properties reveal that precipitated silica interacts chemically with epoxidized natural rubber (ENR) during high temperature (180°C) molding and the extent of chemical interaction increases in the presence of silane coupling agent, namely N‐3(N‐vinyl benzyl amino) ethyl‐γ‐amino propyl trimethoxy silane monohydrogen chloride. Fourier transform infrared spectroscopic studies show that silica is bonded to ENR through formation of Si—O—C bond, whereas in the presence of silane coupling agent, silica is bonded to the coupling agent through Si—O—Si bond, and ENR is bonded to the coupling agent through C—N—C bond formation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 389–398, 1999  相似文献   

2.
白炭黑填充的环氧化天然橡胶性能研究   总被引:1,自引:1,他引:1       下载免费PDF全文
王迪珍  徐筱丹  李航 《橡胶工业》1995,42(6):323-326
研究了白炭黑用量对环氧化天然橡胶(ENR)流变性能、弹性记忆、硫化特性、平衡应力-应变及动态力学性能的影响。试验结果表明:白炭黑填充的ENR属非牛顿型流体;随着白炭黑用量增加,挤出膨胀减小,硫化速度加快,滞后增大;随着剪切速率增大,挤出膨胀增大。透射电镜照片表明硅烷偶联剂使白炭黑在ENR中的分散性明显提高。  相似文献   

3.
Based on the results of bound‐rubber determination, Monsanto rheometric studies, solvent swelling, measurement of physical properties, and infrared spectroscopic studies, it is revealed that epoxidized natural rubber (ENR) and hard clay interact chemically to form Si–O–C bond during high‐temperature (180°C) molding. It is also observed that addition of the silane coupling agent N‐3‐(N‐vinyl benzyl amino)ethyl‐γ‐amino propyl trimethoxy silane monohydrogen chloride enhances the extent of the chemical interaction with the formation of coupling bonds of Si–O–Si type between clay and the coupling agent and C–N bonds between ENR and the coupling agent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1895–1903, 1999  相似文献   

4.
Results of measurements of physical properties and solvent swelling of the extrudates indicate that epoxidised natural rubber (ENR) interacts chemically with precipitated silica when the mix of the two was extruded at 150–170°C in a Monsanto Processability Tester (MPT). The extent of interaction between the rubber and the filler depends on the extrusion time, the volume fraction of the filler, the shear rate and the addition of the silane coupling agent, namely N-3-(N-vinyl benzyl amino) ethyl-γ-amino propyl trimethoxy silane monohydrochloride. The activation energy of the chemical interaction between ENR and silica decreases on the addition of the silane coupling agent.  相似文献   

5.
The present study represents a new concept: the possibility of preparing a rubber compound filled with silica without the use of a silane coupling agent. For this purpose two different types of silica have been compounded with two different grades of epoxidized natural rubber (ENR) without the use of a silane coupling agent. The mechanical and other properties of the resulting compounds have been compared with two reference compounds prepared from natural rubber (NR) and silica with and without the addition of a silane coupling agent bis‐(triethoxysilylpropyl)tetrasulfane (TESPT). It is shown that by using ENR as rubber component together with silica, it is possible without the use of coupling agents to achieve significantly improved mechanical properties with respect to similar NR compounds without coupling agents. The reason for these improvements lies in the polar nature of ENR which interacts strongly with the silica surface by hydrogen bonding mechanism. This does not happen when NR or another non‐polar rubber component is used. Thus, in this latter case the use of silane coupling agents to make the silica surface more non‐polar and hydrophobic is needed to have a good reinforcing effect and overall performances from the composite studied.  相似文献   

6.
Hydrated silicas impart better physical properties to polar rubbers, compared to those of hydrocarbon rubbers. However, to achieve optimum properties silane coupling agents are crucial in such formulations. Epoxidized natural rubber (ENR) in small proportions is used as a reinforcement modifier for silica‐filled nitrile rubber (NBR). Two systems of cure were used: N‐cyclohexyl‐ 2‐benzthiazyl sulfenamide (CBS) alone and in combination with diphenyl guanidine (DPG). In the CBS accelerated system, incorporation of an optimum concentration of about 15% of ENR on total rubber was found to improve technological properties. Addition of a secondary accelerator further improves these properties. Comparable results are obtained with those containing coupling agent and NBR–ISAF. High bound rubber and volume fraction values indicate a high polymer–filler interaction and gel content resulting from the NBR–ENR interaction. Results of this study reveal that ENR could be used as a reinforcement modifier for the NBR–silica system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 292–306, 2002  相似文献   

7.
The effects of silica, carbon black, and china clay on the mechanical properties of 1,2-polybutadiene have been investigated. They include stress–strain behavior, tensile strength, elongation, tear strength, tension set, impact strength, and hysteresis. The effect of silane coupling agent on these properties has also been studied. The stress–relaxation behavior of the filled and unfilled systems has also been compared. The rate of relaxation increases with temperature. The dynamic mechanical properties have been determined using a Rheovibron viscoelastometer at 35 Hz at different temperatures. The storage and loss moduli are enhanced by addition of fillers. Silane coupling agent increases storage modulus as well as tan δmax of the clay-filled polymer. The suitability of Voigt and Reuss models in predicting the composite moduli is examined.  相似文献   

8.
环氧化天然橡胶复合材料性能研究   总被引:2,自引:0,他引:2  
采用新方法制备环氧化天然橡胶(ENR)/白炭黑和天然橡胶(NR)/ENR/白炭黑复合材料,并对其性能进行研究。结果表明:ENR/白炭黑复合材料的热稳定性优于ENR;在NR/ENR并用胶中加入白炭黑和硅烷偶联剂KH-550,NR/ENR/白炭黑复合材料0℃时的损耗因子(tanδ)增大,65℃时的tanδ值减小,复合材料的抗湿滑性能提高,滚动阻力减小。  相似文献   

9.
An amino‐functional silane coupling agent, which is an important component for epoxy molding compound (EMC), has been used by diverse methods, such as integral addition into a mixed powder and pretreatment on silica or on resin. However, the homogeneous dispersion of the amino‐functional silane coupling agent in mixed powder is limited with integral addition, and the possibility of white gel formation, sometimes causing gate blocking during the transfer‐molding process, due to the aggregation of silica with the coupling agent cannot be completely removed by it. The pretreatment of the amino‐functional silane coupling agent on silica has been adopted as an alternative process, but the process is expensive and limited in mass production. Although the pretreatment of the coupling agent on resin as another method has also been used by some EMC manufacturing companies, it has hardly been known in which resin phase, the epoxy or hardener, the silane coupling agent should be pretreated for better mechanical properties of EMC. In this study, the pretreatment of the amino‐functional silane coupling agent on epoxy or phenol resin, essential components of EMC, has been investigated with respect to the reaction during the pretreatment and the properties of EMC according to the different pretreatment methods. In the case of the pretreatment on epoxy, the amino‐functional silane coupling agent rapidly forms an adduct with epoxy via a ring‐opening reaction, whereas its alkoxy groups are well preserved. The glass‐transition temperature and flexural strength of the EMC by the application of the pretreatment method on epoxy are lower than those by the pretreatment on phenol. It is thought that the degree of linkage between the resin matrix and silica becomes lower because of the confinement of aminopropyltriethoxy silane (APTS) within the epoxy matrix through an irreversible reaction with epoxy in advance. In the case of the pretreatment on phenol, most of the alkoxy groups in the coupling agent are assumed to be replaced with protonic nucleophiles such as phenol, generating an equivalent amount of alcohol. Because the adduct between the phenol and amino‐functional silane coupling agent can be easily regenerated during the manufacturing process, it is thought that the pretreatment method of APTS on phenol helps APTS disperse well within EMC. Actually, the glass‐transition temperature and flexural strength of EMC by the application of the pretreatment method on phenol are higher than those by the integral addition method and the pretreatment on epoxy. However, they become lower as the degree of reaction of silane with phenol increases. The pretreatment of the amino‐functional silane coupling agent on phenol shows lots of advantages over the previous methods. From the viewpoint of the process, the homogeneous dispersion of the coupling agent can be obtained with consistency, and the possibility of white gel formation can also be completely removed by it. From the perspective of properties, through a controlled pretreatment on phenol resin, better mechanical properties of EMC can be obtained than those through the pretreatment on epoxy. In addition, the pretreatment process on phenol is simple and feasible for mass production. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2171–2179, 2006  相似文献   

10.
On the basis of results of measurements of physical properties and solvent swelling of the extrudates, it has been observed that epoxidized natural rubber (ENR) interacts chemically with intermediate super abrasion furnace (ISAF) carbon black when the mix of the two was extruded at 130–160°C in a Monsanto Processability Tester (MPT). The extent of interaction between the rubber and filler depends on the following factors: extrusion time, carbon black loading, shear rate, and the extent of oxidation on the carbon black surface. Addition of the silane coupling agent, namely, N‐3‐(‐N‐vinyl benzyl amino) ethyl‐γ‐amino propyl trimethoxy silane monohydrochloride, enhances the rate of the interaction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 557–563, 1999  相似文献   

11.
In this article, we provide an extensive analyses of various properties that are required for tire tread based on developed highly dispersible (HD) silica‐filled epoxidized natural rubber composites. Silica in an HD form has become a staple filler in tire tread applications because of its inherent advantages. In this study, epoxidized natural rubber with 25 mol % epoxide (ENR 25) and natural rubber were mixed with two different types of HD silica for superior reinforcement. A standard tire tread formulation was used as the base compound. The magic triangle properties were conspicuously influenced by the viscoelastic characteristics of the vulcanizates. The introduction of polar rubber (ENR 25) into the HD silica greatly improved rheological, physicomechanical, bound rubber content, and dynamic mechanical properties, and this led to a better, fuel‐efficient tire. We successfully achieved this, even in the absence of a silane coupling agent. ENR 25 played an imperative role in showing an extraordinary rubber–filler interactions and was primarily responsible for these observations. In this study, we explored the HD silica dispersion with transmission electron microscopy observations. Morphological studies revealed well‐dispersed HD silica with the formation of a rubber–filler network. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43531.  相似文献   

12.
A novel process of surface modification of silica fillers has been performed by coating with an acrylate monomer, trimethylol propane triacrylate (TMPTA) and with a silane coupling agent, triethoxy vinyl silane (TEVS), followed by electron beam irradiation of these coated fillers. The surface‐modified fillers have been characterized by Fourier‐Transform Infrared Analysis (FTIR), Electron Spectroscopy for Chemical Analysis (ESCA), Contact angle measurements by dynamic wicking method, Scanning Electron Microscopy (SEM), Energy dispersive X‐ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fractal studies, Thermogravimetric analysis (TGA), and X‐ray diffraction (XRD) studies. Presence of the acrylate and the silane coupling agent on the modified fillers is confirmed from the above studies. The contact angle measurements suggest a significant improvement in hydrophobicity of the treated fillers, which is supported by water flotation test. After irradiation and acrylate treatment an increase in filler aggregation is observed, which is not as significant in the case of silanized silica filler. However, XRD studies demonstrate that the entire modification process does not alter the bulk properties of the fillers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2255–2268, 2002  相似文献   

13.
Siliceous earth (SE) is a kind of mineral consisting of lamellar kaolinite, muscovite (aluminum silicate) and corpuscular silica. Natural rubber (NR) composites containing NR as matrix, epoxidized natural rubber (ENR) as compatibilizer and SE as filler were produced by latex coagulating process and cured using a conventional sulfuric system. Monsanto measurements have shown that the ENR accelerates the vulcanization reaction and gives rise to a marked increase of the torque. The results of physico-mechanical properties of NR vulcanizates show that, when SE modified by silane coupling agent and in the meanwhile adding 4 phr of ENR as compatibilizer, maximum tensile strength, elongation at break, reinforcing index (M300/100) of NR/SE vulcanizates were obtained. The dynamic-mechanical properties exhibit the addition of ENR can enhance wet grip characteristics and reduce rolling resistance by lowering tan δ values at 60 °C and increasing tan δ values at 0 °C of NR compounds. The overall results show that properties of SE-reinforced NR substantially improved by adding ENR as compatibilizer. The addition of silane coupling agent and combining an appropriate amount of ENR would be better choice to improve the properties of NR/SE compounds.  相似文献   

14.
提出在胎面胶密炼机混炼过程中白炭黑与硅烷偶联剂反应的高温区间加入干冰的混炼新工艺。试验结果表明,该方法能够有效延长高温反应时间,促进白炭黑硅烷偶联化反应,提高白炭黑分散效果,从而提高胶料的综合物理性能,改善动态力学性能,同时提高混炼效率,降低能耗。  相似文献   

15.
The tribological and electrical properties of epoxy composites filled with nano‐sized silica particles are studied and discussed in this article. To enhance the interfacial interaction between the fillers and the matrix, nanoparticles were pretreated with silane coupling agent. Dry sliding wear tests were carried out with configuration of composite sample on a rotating steel disc. Electrical measurements such as AC breakdown voltage, at 50 Hz, high voltage‐low current arc resistance and wet tracking resistance were carried out. The results reveal the influence of nanosized silica loading on wear resistance of the epoxy. It is observed that 10 wt% loading of silica is very effective in reducing the wear loss. With further increase of silica filler loading, the nanoparticles agglomerated and resulted in increase of the specific wear rate. The influence of silica particles on the specific wear rate is more pronounced under sliding wear situation. The influence of silica particle loading on epoxy is evident in the results of electrical parameters like dielectric strength, arc resistance and tracking resistance. These parameters showed improvement with filler loading up to 15 wt% and beyond this value of filler loading noticeable deterioration was observed. The effects of electrical stresses in the morphologies of the surfaces of epoxy nanocomposites are discussed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
Poly(melamine‐urea‐formaldehyde) (MUF) microcapsules used as self‐healing component of composites were prepared by in situ polymerization. The surface of MUF microcapsules was modified by 3‐aminopropyltriethoxy silane‐coupling agent (KH550). The interfacial interactions between MUF microcapsules and KH550 were studied by Fourier transform infrared spectra (FTIR). FTIR results show that the silane‐coupling agent molecule binds strongly to the MUF microcapsules surface. A chemical bond (Si? O? C) is formed by the reaction between the Si? OH and the hydroxyl group of MUF microcapsule. This modification improves the thermal properties of microcapsules. Optical microscope (OM) and scanning electron microscope (SEM) show that a thin layer is formed on the surface of MUF microcapsules. The interfacial adhesion effect between MUF microcapsules and unsaturated polyester matrix was investigated. MUF microcapsules disperse evenly in the composites. When crack propagated, the microcapsules were broken and the repair agent flowed from the microcapsules to react with the curing agent. Then the crosslinking structure was formed and the composite was repaired. The tensile properties, impact properties, and dynamic mechanical properties of composites have been evaluated. The results indicate that the silane‐coupling agent plays an important role in improving the interfacial performance between the microcapsules and the matrix, as well as the mechanical properties of the composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A series of thermosensitive organic–inorganic hybrid gels containing nanosilica or modified nanosilica were prepared from N‐isopropylacrylamide (NIPAAm), and N,N′‐methylene‐bis‐acrylamide (NMBA) and nanosilica (AE200) or modified AE200 (mAE200); and NIPAAm, NMBA, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and AE200 or mAE200 in this study. The effect of inorganic nanosilica on the swelling behaviors and mechanical properties were investigated by adding different amount of nanosilica and modified nanosilica. Results showed that the swelling ratios of the hybrid gels decrease with increasing nanosilica content. Existence of silane coupling agent would also reduce the swelling ratios of the hybrid gels. Adding coupling agent or nanosilica would improve the gel strength. Modification of nanosilica by grafting amino‐silane via sol–gel process was carried out and the effect of addition of modified silica on gel properties was also investigated. Results showed that the hybrid gels containing modified silica would have higher swelling ratios and moduli than those containing unmodified silica. Gels containing both silane coupling agent and silica would have higher crosslinking density because the silica would be better crosslinked with coupling agent. POLYM. COMPOS., 31:1712–1721, 2010. © 2010 Society of Plastics Engineers.  相似文献   

18.
The mechanical performance of natural rubber (NR), synthetic poly-isoprene rubber (IR), and styrene–butadiene rubber (SBR) composites filled with various silica/silane systems is investigated. The results are analyzed by referring to micro-mechanical material parameters, which quantify the morphological and structural properties of the polymer and filler network. These are obtained from fits with the dynamic flocculation model (DFM) describing the strongly nonlinear quasi-static stress–strain response of filler-reinforced elastomers as found from multihysteresis measurements of the investigated compounds. We focus on the reinforcement mechanisms of silica compounds with coupling and covering silane, respectively. The fitted material parameters give hints that the coupling silane provides a strong chemical polymer–filler coupling, which is accompanied by improved strength of filler–filler bonds for all three rubbers types. This may result also from the chemical coupling of short chains bridging adjacent silica particles. It implies larger stress values for the coupling silane and, in the case of NR and IR, a more pronounced “Payne effect” compared to the covering silane. In contrast, for SBR, the coupling silane delivers a lower Payne effect, which is explained by differences in the compatibility between rubber type and silane-grafted silica surface. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48435.  相似文献   

19.
The rheological properties of Bis-GMA dispersions filled with fumed silica were investigated to optimize the manufacturing process and mechanical properties by using a Rheometrics Mechanical Spectrometer (RMS). Steady and dynamic measurements on the RMS were carried out to obtain shear viscosity and dynamic mechanical properties. The effect of several factors on the rheological properties of fumed silica dispersions was also examined. The factors were a concentration of a silane coupling agent (γ-MPS), the methods of surface treatment of fillers, silica content, diluent concentration, shear rate, and operating temperatur. From these studies, it was observed that shear viscosity showed an asymptotic phenomenon at a higher concentration than a uniform multi-layer coverage concentration of γ-MPS. The silane coupling agent had a significant role in the reduction of tan δ, resulting from a decrease of loss modulus, while fillers decreased tan δ by increasing the storage modulus. In cases where the silica content and diluent concentration increased simultaneously, the Barcol hardness of Bis-GMA/silica composites was increased, but there was no change in the viscosity of dispersions and diametral tensile strength of those composites.  相似文献   

20.
Composites of carbon nanotubes (CNT) and epoxidized natural rubber (ENR) were prepared by in‐situ functionalization of CNT with two alternative silane coupling agents: bis(triethoxysilylpropyl) tetrasulfide (TESPT) and 3‐aminopropyltriethoxysilane (APTES). The reactions of ENR molecules with the functional groups on CNT surfaces and with the silane molecules were characterized by Fourier transform infrared. Furthermore, cross‐link density, relaxation behaviors, curing, mechanical, electrical, and morphological properties of pristine ENR and the ENR composites were investigated. Very low percolation thresholds, at CNT concentrations as low as 1 phr, were observed in the ENR–CNT and the ENR–CNT–TESPT composites. This might be attributed to improvements in the chemical linkages between ENR molecules and functional groups on CNT surfaces that led to a homogenous dispersion of CNTs in the ENR matrix, with loose CNT agglomerates. POLYM. ENG. SCI., 55:2500–2510, 2015. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号