首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Segmented poly(urethane–urea)s have been synthesized with mixed soft segments of ultra-low monol content poly(propylene glycol) (PPG) and tri(propylene glycol) (TPG) which allows the fabrication of quality elastomers without crosslinking. The narrow molecular weight distribution of the ultra-low monol content PPG polyols allows for the probing of the influence of the low molecular components of the molecular weight distribution through the inclusion of low molecular homologs of PPG such as TPG. Structure–property relationships for these materials were investigated as average soft segment molecular weight was varied by blending 8000 g/mol PPG with TPG to achieve molecular weights of 2500, 2000, and 1500 g/mol. Morphological features such as microphase separation, interdomain spacing and interphase thickness were quantified and revealed with SAXS. AFM was utilized to verify the microphase separation characteristics inferred by SAXS. The thermal and mechanical behavior was assessed through applications of DMA, DSC, and conventional mechanical tests. It was found that as the average soft segment molecular weight was decreased through the addition of TPG, the interdomain spacing distinctly increased contrary to the trend seen for decreasing soft segment molecular weight in PPG based systems without TPG. Additionally, the inclusion of TPG in the poly(urethane–urea) formulations resulted in the formation of larger hard domains as evidenced by AFM. These results and supporting evidence from DMA, DSC, birefringence, and mechanical testing led to the conclusion that TPG apparently acts more as a chain extender as well as, or in contrast to, a soft segment.  相似文献   

2.
Influence of soft segment molecular weight and hard segment content on the morphology, thermomechanical and tensile properties of homologous polyurethaneurea copolymers based on narrow molecular weight poly(propylene oxide)glycol (PPG) oligomers were investigated. A series of polyurethaneureas with hard segment contents of 12–45% by weight and PPG number average molecular weights <Mn> of 2000 to 11,800 g/mol were synthesized and characterized structurally by SAXS and mechanically by DMA and stress strain analysis. Bis(4-isocyanatocyclohexyl)methane and 2-methyl-1,5-diaminopentane were used as the diisocyanate and the chain extender respectively. All copolymers displayed microphase separation by SAXS and DMA. The critical entanglement molecular weight (Me) of PPG is reported to be around 7700 g/mol. Our mechanical results suggest that when copolymers possess similar hard segment contents and are compared to those based on soft segments with number average molecular weights (Mn) greater than Me, they generally displayed higher tensile strengths and particularly lower hysteresis and creep than those having soft segment molecular weights below Me. These results imply that soft segment entanglements in thermoplastic polyurethaneureas may provide a critical contribution to the tensile properties of these copolymers – particularly in the range where the soft segment content is dominant.  相似文献   

3.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

4.
Segment and domain orientation behaviors of a series of poly(butylene succinate) (PBS) –poly(tetramethylene glycol) (PTMG) segmented block copolymers containing different amounts of hard segment were studied with synchrotron small‐angle X‐ray scattering (SAXS) and infrared dichroic methods. Copolymers used in this work consist of PBS as a hard segment, and poly(tetramethylene oxide) (PTMO) of molecular weight 2000g/mol as a soft segment. As hard‐segment content increased, phase‐separated morphology changed from a phase of continuous soft matrix containing isolated hard domain to one of continuous hard matrix. Upon stretching, domains responded differently depending on their initial orientation. Based on SAXS results, two major domain deformation modes, that is, lamellar separation and shear compression, were suggested. The orientation behavior of the hard and soft segments was examined with infrared dichroic method. Upon drawing, the orientation function of the crystalline hard segment decreased at low‐draw ratios. It was interpreted in terms of rotation of long axis of hard domain along the stretching direction. The lowest value of the orientation function of PBS30 was approximately −0.5, that is, theoretical minimum. This result seems to indicate that for PBS30 containing about 30% hard segment, rotation of hard domain occurs without appreciable interdomain interaction, which is consistent with the morphological model suggested on the basis of SAXS results. Plastic deformation of the hard domain due to domain breakup was found to occur at low‐draw ratios for the sample containing higher hard‐segment content. Domain mechanical stability was tested by drawing a sample up to three different maximum draw ratios. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 699–709, 2000  相似文献   

5.
Recent advances in the catalyst technology associated with the production of poly(propylene glycol) (PPG) have allowed for the fabrication of ultralow monol content PPG macrodiols (Acclaim? polyols), which are highly bifunctional and can be produced in substantially higher molecular weights and with narrower molecular weight distributions than previously possible. These factors have enabled the preparation of higher value elastomers and may allow for the first manufacture of economically attractive PPG‐based poly(urethane‐urea) (PUU) fibers. In the past, many performance polyurethane and PUU elastomers used poly(tetramethylene ether glycol) (PTMEG) for the soft segments either alone or in combination with other macrodiols. The work presented here details the investigation of the morphological features of PUU systems with mixed soft segments of PPG, PTMEG, and a low molecular analog of PPG, tri(propylene glycol) (TPG) in an effort to ascertain the influence of structural features on the mechanical and thermal properties of the elastomers. Also of interest was whether the incorporation of PPG and TPG would either prohibit or greatly hinder the formation of strain‐induced PTMEG crystallites. It was found that, even when only 60 wt % of the soft segments consisted of PTMEG, those soft segments were still able to undergo recognizable strain‐induced crystallization as detected by wide‐angle X‐ray scattering. It was also seen that, as the ratio of PPG to PTMEG was varied, there were systematic changes in the soft segment glass transition and cold crystallization characteristics. Inclusion of PPG and TPG resulted in PTMEG's diminished ability to undergo cold and strain‐induced crystallization, as seen with differential scanning calorimetry and wide‐angle X‐ray scattering. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3520–3529, 2003  相似文献   

6.
A series of eight thermoplastic polyurethane elastomers were synthesized from 4,4′-methylene diphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) chain extender, with poly(hexamethylene oxide) (PHMO) macrodiol soft segments. The soft segment molecular weights employed ranged from 433 g/mol to 1180 g/mol. All materials contained 60% (w/w) of the soft segment macrodiol. Differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), wide angle x-ray diffraction (WAXD), and small angle x-ray scattering (SAXS) techniques were employed to characterize morphology. Tensile and Shore hardness tests were also performed. Materials were tested in the annealed state. It was found that an increase in segment length was accompanied by an increase in the degree of microphase separation, average interdomain spacing, hard domain order, hardness, stiffness, and opacity. DSC experiments showed the existence of several hard segment melting regions that were postulated to result from the disordering or melting of various hard segment length populations. For the system and composition ratio employed, it was found that optimum tensile properties (UTS and breaking strain) were achieved when a PHMO molecular weight of between 650 and 850 was utilized. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Fiber‐forming poly(urethane semicarbazide)s were prepared with poly(butylene adipate)glycol as soft‐segment domains and hexamethylene diisocyanate/terephthalic dihydrazide as hard‐segment domains. The hard‐segment content was varied via variations in the polyol/isocyanate molar ratio, and the films were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The effect of the hard‐segment‐content variation on the properties was studied by differential scanning calorimetry, stress–strain analysis, and dynamic mechanical testing. Differential scanning calorimetry showed that the samples exhibited a very low level of hard/soft‐segment phase mixing. The stress–strain analyses revealed that the elongation at break decreased with an increase in the hard‐segment content and that the mechanical property depended on the overall crystallinity of the samples. Dynamic mechanical tests revealed a high glassy‐to‐rubbery state modulus and a high degree of phase separation between the hard and soft segments. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 86–93, 2002  相似文献   

8.
Tough, optically clear simultaneous interpenetrating polymer networks (SINs) of polyurethane (PU) and poly(allyl diglycol carbonate) (ADC) at different compositions were synthesized. The effects of the molecular weight of PU soft segment on the morphology, mechanical properties, and thermal transition behavior of the SINs at two levels of crosslinking agent were studied. The miscibility of PU/ADC SINs, studied by TEM and DMA, was greatly influenced by the SIN composition and the molecular weight of poly(caprolactone) diol (PCL) as the PU soft segment. A single‐phase morphology at a PU concentration of 10% changed to a very fine microheterogeneous morphology as the molecular weight of PCL changed from 530 to 1250. The two‐phase morphology of the PU10/ADC90 SIN based on higher PCL molecular weight (PCL 1250) was also confirmed by DMA, which displayed a sharp peak for the ADC‐rich phase and a small shoulder for the PU‐rich phase transition in the tan δ plot. The SINs at 20–30% PU composition exhibited co‐continuous phase morphology in the transmission electron micrographs, in which the phase regions grew larger as the PCL molecular weight increased from 530 to 1250. All the SIN samples possessed excellent optical transparency except two samples with 30% PU composition based on PCL 1250, which showed a hazy appearance. The tensile strength, modulus, and toughness of the SINs decreased by increasing the molecular weight of PCL from 530 to 1250, whereas the elongations at break remained nearly unchanged. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1583–1595, 2003  相似文献   

9.
A series of novel thermoplastic elastomers, based on poly(dimethylsiloxane) (PDMS) as the soft segment and poly(butylene terephthalate) (PBT) as the hard segment, were synthesized by catalyzed two‐step, melt transesterification reactions of dimethyl terephthalate and methyl esters of carboxypropyl‐terminated poly(dimethylsiloxane)s (M?n = 550–2170 g mol?1) with 1,4‐butanediol. The lengths of both the hard and soft segments were varied while the weight ratio of the hard to soft segments in the reaction mixture was maintained constant (57/43). The molecular structure, composition and molecular weights of the poly(ester–siloxane)s were examined by 1H NMR spectroscopy. The effectiveness of the incorporation of the methyl‐ester‐terminated poly(dimethylsiloxane)s into the copolymer chains was verified by chloroform extraction. The effect of the segment length on the transition temperatures (Tm and Tg) and the thermal and thermo‐oxidative degradation stability, as well as the degree of crystallinity and hardness properties of the synthesized TPESs, were studied. Copyright © 2003 Society of Chemical Industry  相似文献   

10.
Hydroxy‐terminated poly(pentamethylene 2,6‐naphthalenedicarboxylate) oligomers were prepared by melt polycondensation of dimethyl 2,6‐naphthalenedicarboxylate with excess 1,5‐pentanediol followed by evacuating out some 1,5‐pentanediol. The molecular weight of the poly(pentamethylene 2,6‐naphthalenedicarboxylate) oligomers was controlled by the charge molar ratio of 1,5‐pentanediol to dimethyl 2,6‐naphthalenedicarboxylate and the amount of 1,5‐pentanediol removed under vacuum. The 1H‐NMR spectra of the poly(pentamethylene 2,6‐naphthalenedicarboxylate) oligomers indicate that the transesterification between dimethyl 2,6‐naphthalenedicarboxylate and 1,5‐pentanediol was almost complete. Block copolyesters with hard segments of poly(pentamethylene 2,6‐naphthalenedicarboxylate) and soft segments of poly(tetramethylene adipate) were prepared by coupling the poly(pentamethylene 2,6‐naphthalenedicarboxylate) oligomer and a poly(tetramethylene adipate) glycol with methylene‐4,4′‐diphenylene diisocyanate in solution. The block copolyesters were characterized by IR, 1H‐NMR, DSC, and X‐ray diffraction. The hard segments in the block copolyesters display an amorphous state. However, the thermal transitions of soft segments in the block copolyesters are strongly dependent on the composition. When the content of the hard segments increases, the glass transition temperature of the soft segments increases. Thus, the amorphous parts of the soft segments would be partially miscible with the hard segments. When the content of the hard segments is very low, the soft segments of the block copolyesters exhibit high crystallinity. But, as the content of the hard segments is about 30 wt % or more, the soft segments of the block copolyesters become amorphous. This is described as the effect of the presence of the hard segments which are partially miscible with the soft segments. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3652–3659, 2002  相似文献   

11.
Different series of poly(ether ester) (PEE) thermoplastic elastomers were synthesized using dimethyl-2,6-naphthalene dicarboxylate as hard segment, 1,4-butanediol as the chain extender, and three different soft segments of different molecular weights (MW), namely polycaprolactone diol (MW: 530 and 2000), poly(tetramethylene ether glycol) (MW: 1000 and 1800), and polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone (MW: 2000). The composition of soft segment was changed from 30% to 50% with respect to the hard segment. The characteristic studies were focused to analyze the influence of the concentration and length of the soft segment content. In each series, 50:50 compositions of the hard and soft segments were found to show the best mechanical properties. In addition the physical properties of the elastomer were very sensitive to the type of soft segment. The elastomers prepared in this study were systematically characterized using various spectroscopic studies and thermal and mechanical analyses. As a means of discovering the feasibility of PEE elastomers as new functional materials honeycomb patterns and nanofibers have been fabricated by applying breath figures method and electrospinning, respectively, yielding uniform honeycomb structures and nanofibers of their diameter ranging from about 100 to 800 nm depending on the type of elastomer and the electrical potential employed .  相似文献   

12.
A series of waterborne poly(urethane‐urea)s, WPUUs, based on using nonpolar hydroxyl‐terminated polybutadiene (HTPB) as the soft segment, were successfully synthesized in this article. The effects of the COOH group content and soft‐segment molecular weight (Mns) on the dispersion, morphology, and physical properties were investigated. Variations of the particle size, viscosity, and zeta potential were first governed by the hydrophilicity of the polymer chain, and then by the swelling derived from water. Fourier transfer infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) indicated that the degree of phase separation decreased as the COOH group content increased or as Mns decreased. However, the hydrogen bonding between the soft and hard segments and the two‐phase mixing could not occur in this nonpolar HTPB‐based WPUU system, indicating that the hard segments tended to form smaller domains and to pack more loosely. It was attributed to the fact that the presence of bulky ionic salt groups destroyed the ordered arrangement of the hard segments. In this case, the increases of the interface area between the soft and hard phases resulted in that the present behaviors were similar to the phase mixing. In tensile properties, HTPB‐based WPUUs exhibited higher tensile stress, elongation at break, and modulus as the COOH group content decreased or as Mns decreased. In thermal degradation, the introduction of HTPB polyol improved the thermal stability of WPUU. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
A series of aliphatic poly(ether–ester)s based on flexible poly(tetramethylene oxide) (PTMO) and hard poly (butylene succinate) (PBS) segments were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,4‐butanediol, and α,ω‐hydroxy‐terminated PTMO (Mn = 1000 g/mol) in the bulk. The content of soft PTMO segments in the polymer chains was varied from 10 to 50 mass %. The effect of the introduction of the soft segments on the structure, thermal, and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of the aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using DSC. The degree of crystallinity was determined by means of DSC and WAXS. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests on polymer films in phosphate buffer solution with Candida rugosa lipase at 37°C, was compared with hydrolytic degradation in the buffer solution. Viscosity measurements confirmed that there was no change in molecular weight of the copolyesters leading to the conclusion that the degradation mechanism of poly(ester–ether)s based on PTMO segments occurs through the surface erosion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
A series of polyether–copolyester segmented copolymers ((PBT–PET)PTMG) based on hard segments of tetramethylene terephthalate–ethylene terephthalate copolyester (PBT–PET) and soft segments of poly(tetramethylene ether)(PTMG) was synthesized. The hard : soft segment weight ratio was 30 : 70 and the mole ratio of PBT : PET was 1 : 10; 1 : 6; 1 : 1; 3 : 1, respectively. Their mechanical properties, morphology, crystallization behavior and optical transparency were investigated and compared with poly(tetramethylene terephthalate)–poly(tetramethylene ether)(PBT–PTMG), as well as with poly(ethylene terephthalate)–poly(tetramethylene ether)(PET–PTMG), consisting of the equivalent composition ratio of hard and soft segments. It was found that the transparency could be improved by introducing a small amount of PBT into PET–PTMG through copolymerization. However, a decrease was observed in the transparency if more PBT was added. This is due to the fact that the copolymerization makes both crystallinity and crystallization rate decrease.  相似文献   

15.
A series of novel thermoplastic elastomers, based on poly(butylene terephthalate) (PBT) and polycaprolactone‐block‐polydimethylsiloxane‐block‐polycaprolactone (PCL‐PDMS‐PCL), with various mass fractions, were synthesized through melt polycondensation. In the synthesis of the poly(ester‐siloxane)s, the PCL blocks served as a compatibilizer for the non‐polar PDMS blocks and the polar comonomers dimethyl terephthalate and 1,4‐butanediol. The introduction of PCL‐PDMS‐PCL soft segments resulted in an improvement of the miscibility of the reaction mixture and therefore in higher molecular weight polymers. The content of hard PBT segments in the polymer chains was varied from 10 to 80 mass%. The degree of crystallinity of the poly(ester‐siloxane)s was determined using differential scanning calorimetry and wide‐angle X‐ray scattering. The introduction of PCL‐PDMS‐PCL soft segments into the polymer main chains reduced the crystallinity of the hard segments and altered related properties such as melting temperature and storage modulus, and also modified the surface properties. The thermal stability of the poly(ester‐siloxane)s was higher than that of the PBT homopolymer. The inclusion of the siloxane prepolymer with terminal PCL into the macromolecular chains increased the molecular weight of the copolymers, the homogeneity of the samples in terms of composition and structure and the thermal stability. It also resulted in mechanical properties which could be tailored. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Dimethyl terephthalate (DMT) and ethylene glycol (EG) were used for the preparation of poly(ethylene terephthalate) (PET), and poly(ethylene glycol) (PEG) was added as a soft segment to prepare a PET–PEG copolymer with a shape‐memory function. MWs of the PEG used were 200, 400, 600, and 1000 g/mol, and various molar ratios of EG and PEG were tried. Their tensile and shape‐memory properties were compared at various points. The glass‐transition and melting temperatures of PET–PEG copolymers decreased with increasing PEG molecular weight and content. A tensile test showed that the most ideal mechanical properties were obtained when the molar ratio of EG and PEG was set to 80:20 with 200 g/mol of PEG. The shape memory of the copolymer with maleic anhydride (MAH) as a crosslinking agent was also tested in terms of shape retention and shape recovery rate. The amount of MAH added was between 0.5 and 2.5 mol % with respect to DMT, and tensile properties and shape retention and recovery rate generally improved with increasing MAH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 27–37, 2002  相似文献   

17.
A series of eight polyurethane elastomers was prepared using a two‐step bulk polymerization procedure to investigate the effect of the siloxane chain extender 1,3‐bis(4‐hydroxybutyl)1,1,3,3‐tetramethyldisiloxane (BHTD) on polyurethane properties and morphology. All polyurethanes were based on 40 wt % hard segment derived from 4,4′‐methylenediphenyl diisocyanate (MDI) and a mixture of 1,4‐butanediol (BDO) and BHTD in varying molar ratios. The soft segment was based on an 80 : 20 (w/w) mixture of the macrodiols α,ω‐bis(6‐hydroxyethoxypropyl)polydimethylsiloxane (PDMS, MW 965) and poly(hexamethylene oxide) (PHMO, MW 714). Polyurethanes were characterized by size‐exclusion chromatography, tensile testing, differential scanning calorimetry, dynamic mechanical thermal analysis, and FTIR spectroscopy. Clear and transparent polymers were produced in all cases with number‐average molecular weights in the range of 90,000 to 111,000. The ultimate tensile strength decreased only slightly (15%), but Young's modulus and flexural modulus decreased by 76 and 72%, respectively, compared with that of the pure BDO extended polyurethanes as the amount of BHTD was increased to 40 mol %. This change resulted in “softer” and more elastic polyurethanes. Polyurethanes with BHTD contents above 40 mol % were more elastic but had poor tensile and tear strengths. A 60 : 40 molar ratio of BDO : BHTD produced a “soft” polyurethane, which combined good tensile strength and flexibility. The DSC and DMTA results confirmed that the incorporation of BHTD as part of the hard segment yielded polyurethanes with improved compatibility between hard and soft segments. IR data indicated that the amount of hard segments soluble in the soft‐segment phase increased with increasing BHTD, contributing to the improved phase mixing. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 736–746, 2002  相似文献   

18.
The effect of soft segment molecular weight and chemical structure on the morphology and final properties of segmented thermoplastic polyurethanes containing various hard segment contents has been investigated from the viewpoint of the degree of microphase separation. Vegetable oil‐based polyesters and corn sugar‐based chain extender have been used as renewable resources. The synthesis has been carried out in bulk without catalyst using a two‐step polymerization process. Physicochemical, thermal and mechanical properties, and also morphology, have been studied using Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, atomic force microscopy, X‐ray diffraction and mechanical testing. Chemical structure and molecular weight of polyols strongly affect the properties of the synthesized segmented thermoplastic polyurethanes. An increase in soft segment molecular weight leads to an increase of the degree of soft segment crystallinity and microphase separation, thus giving enhanced mechanical properties and higher thermal stability. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
A series of eight thermoplastic polyurethane elastomers were synthesized from 4,4′-methylene diphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) chain extender, with poly(hexamethylene oxide) (PHMO) macrodiol soft segments. The PHMO molecular weights employed ranged from 433 g/mol to 1180 g/mol. All materials contained 60% (w/w) of the macrodiol. The materials were characterized by differential scanning calorimetry (DSC) following up to nine different thermal treatments. In addition, three of the materials were selected for characterization by small-angle x-ray scattering (SAXS) following similar thermal treatments. The DSC experiments showed the existence of five hard segment melting regions (labelled T1-T5), which were postulated to result from the disordering or melting of sequences containing one to five MDI-derived units, respectively. Evidence for urethane linkage dissociation and reassociation during annealing at temperatures above 150°C is presented. This process aids in the formation of higher melting structures. Annealing temperatures of 80–100°C provided the maximum SAXS scattering intensity values. Materials containing longer soft segments (and, therefore, longer hard segments) were observed to develop and sustain higher melting hard domain structures and also develop maximum average interdomain spacing values at higher annealing temperatures. Another additional series of three PHMO-based polyurethanes having narrower hard segment length distributions, was synthesized and characterized by DSC in the as-synthesized and annealed states. The resulting DSC endotherms provided further evidence to suggest that the T1-T5 endotherms were possibly due to melting of various hard segment length populations. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 803–817, 1997  相似文献   

20.
The compatibilizing effect of poly(hexamethylene oxide) (PHMO) on the synthesis of polyurethanes based on α,ω‐bis(6‐hydroxyethoxypropyl) poly(dimethylsiloxane) (PDMS) was investigated. The hard segments of the polyurethanes were based on 4,4′‐methylenediphenyl diisocyanate (MDI) and 1,4‐butanediol. The effects of the PDMS/PHMO composition, method of polyurethane synthesis, hard segment weight percentage, catalyst, and molecular weight of the PDMS on polyurethane synthesis, properties, and morphology were investigated using size exclusion chromatography, tensile testing, and differential scanning calorimetry (DSC). The large difference in the solubility parameters between PDMS and conventional reagents used in polyurethane synthesis was found to be the main problem associated with preparing PDMS‐based polyurethanes with good mechanical properties. Incorporation of a polyether macrodiol such as PHMO improved the compatibility and yielded polyurethanes with significantly improved mechanical properties and processability. The optimum PDMS/PHMO composition was 80 : 20 (w/w), which yielded a polyurethane with properties comparable to those of the commercial material Pellethane™ 2363‐80A. The one‐step polymerization was sensitive to the hard segment weight percentage of the polyurethane and was limited to materials with about a 40 wt % hard segment; higher concentrations yielded materials with poor mechanical properties. A catalyst was essential for the one‐step process and tetracoordinated tin catalysts (e.g., dibutyltin dilaurate) were the most effective. Two‐step bulk polymerization overcame most of the problems associated with reactant immiscibility by the end capping of the macrodiol and required no catalysts. The DSC results demonstrated that in cases where poor properties were observed, the corresponding polyurethanes were highly phase separated and the hard segments formed were generally longer than the average expected length based on the reactant stoichiometry. Based on these results, we postulated that at low levels (∼ 20 wt %) the soft segment component derived from PHMO macrodiol was concentrated mainly in the interfacial regions, strengthening the adhesion between hard and soft domains of PDMS‐based polyurethanes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 2026–2040, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号