共查询到20条相似文献,搜索用时 15 毫秒
1.
E Erhan E Yer G Akay B Keskinler D Keskinler 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2004,79(2):195-206
Highly porous (85% void volume) polymer beads with interconnecting micro‐pores were prepared for the immobilization of Pseudomonas syringae for the degradation of phenol in a fixed‐bed column bioreactor. The internal architecture of this support material (also known as PolyHIPE Polymer) could be controlled through processing before the polymerization stage. The transient and steady state phenol utilization rates were measured as a function of substrate solution flow rate and initial substrate concentration. The spatial concentration of the bacteria on the micro‐porous support particles as well as within them was studied using scanning electron microscopy at various time intervals during the continuous operation of the bioreactor. It was found that although bacterial penetration into the porous support was present after 20 days, bacterial viability however, was compromised after 120 days as a result of the formation of a biofilm on the support particles. The steady state phenol utilization at an initial phenol concentration of 200 mg cm?3 was 100% provided that the flow rate was less than 7 cm3 min?1. Substrate inhibition at a constant flow rate of 4.5 cm3 min?1 was found to begin at 720 mg dm?3. The critical dilution rate for bacteria washout was high as a result of the highly hydrophobic nature of the support and the reduction of pore interconnect size due to bacterial growth within the pores in the vicinity of the surface of the support. Copyright © 2004 Society of Chemical Industry 相似文献
2.
The effects of oxygen supply conditions and specific biofilm interfacial area on the phenol removal rate in a three‐phase fluidized bed bioreactor were evaluated. The experimental data were well‐explained by the semi‐theoretical equation based on the assumption that the reaction rate follows first‐order reaction kinetics with respect to oxygen and zero‐order one with respect to phenol. Two cases, biological reaction as rate‐controlling step and oxygen absorption as rate‐controlling step, were both explicable by this semi‐theoretical equation. The maximum volumetric phenol removal rate was 27.4 kg·m?3·d?1. 相似文献
3.
Phenol degradation at high concentrations was investigated under continuous operation in an immobilized‐cell hollow fiber membrane bioreactor. Pseudomonas putida ATCC49451 was immobilized in asymmetric polysulfone hollow fiber membranes through entrapment within the porous regions and through attachment on the membrane surfaces. Bioreactor performance was assessed based on the startup period, the effect of feed rate (ranging from 21 to 120 mL/h), the relative contribution of the lumen and the shell sides to phenol degradation, the effect of feed phenol concentration (1000–2000 mg/L) and the long‐term operation of the bioreactor. The bioreactor startup was very short, and steady state was accomplished within 160 h. An optimum degradation capacity with respect to phenol loading rate was observed because of the tradeoff in the amount of phenol degraded against the increase in feed rate. It was also found that at higher feed rate, the shell side contributed to a larger proportion of the total phenol degraded compared with the lumen. On the basis of these results, it was found that options abound for the operating conditions of the bioreactor. These can be chosen depending on whether complete phenol degradation or high degradation capacity is desirable. Finally, long‐term sustainable continuous operation of the bioreactor was demonstrated without significant biofilm fouling on the membranes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
4.
5.
Hossein Nikakhtari Gordon A Hill 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2006,81(6):1029-1038
An external loop airlift bioreactor with a small amount (99% porosity) of stainless steel mesh packing inserted in the riser section was used for bioremediation of a phenol‐polluted air stream. The packing enhanced volatile organic chemical and oxygen mass transfer rates and provided a large surface area for cell immobilization. Using a pure strain of Pseudomonas putida, fed‐batch and continuous runs at three different dilution rates were completed with phenol in the polluted air as the only source of growth substrate. 100% phenol removal was achieved at phenol loading rates up to 33 120 mg h?1 m?3 using only one‐third of the column, superior to any previously reported biodegradation rates of phenol‐polluted air with 100% efficiency. A mathematical model has been developed and is shown to accurately predict the transient and steady‐state data. Copyright © 2006 Society of Chemical Industry 相似文献
6.
7.
Hojae Shim Shang‐Tian Yang 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2002,77(12):1308-1315
A fibrous‐bed bioreactor with immobilized cells of Pseudomonas putida and Pseudomonas fluorescens was used to treat groundwater contaminated with benzene, toluene, ethylbenzene, and xylenes (collectively know as BTEX). The kinetics of BTEX biodegradation in the fibrous‐bed bioreactor operated under continuous well‐mixed conditions was studied at room temperature. Aeration was not used in the process fed with groundwater samples with an average total BTEX concentration of 2.75 mg dm?3. All BTEX compounds present in the groundwater feed were concurrently and completely biodegraded even under oxygen‐limited or hypoxic conditions. Nearly 100% removal efficiency was obtained when the retention time was greater than 1 h. BTEX removal efficiency decreased with decreasing the retention time, with p‐ and o‐xylenes showed up first in the treated groundwater, followed by benzene and then other BTEX compounds. Biodegradation rates of BTEX generally increased with increasing BTEX concentration and loading rate. The maximum BTEX biodegradation rate was 5.76 mg h?1 dm?3 at the loading rate of 6.54 mg dm?3 h?1. The bioreactor had a stable performance, maintaining its ability for efficient BTEX degradation without requiring additional nutrients for more than 1 month. The good performance of the fibrous‐bed bioreactor was attributed to the high cell density (~15 g dm?3 reactor volume) in the fibrous matrix. © 2002 Society of Chemical Industry 相似文献
8.
Claudio Garibay‐Orijel Elvira Ríos‐Leal Jaime García‐Mena Hctor Mario Poggi‐Varaldo 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2005,80(10):1180-1187
A fluidized bed bioreactor (FBBR) was operated for more than 575 days to remove 2,4,6‐trichlorophenol (TCP) and phenol (Phe) from a synthetic toxic wastewater containing 80 mg L?1 of TCP and 20 mg L?1 of Phe under two regimes: Methanogenic (M) and Partially‐Aerated Methanogenic (PAM). The mesophilic, laboratory‐scale FBBR consisted of a glass column (3 L capacity) loaded with 1 L of 1 mm diameter granular activated carbon colonized by an anaerobic consortium. Sucrose (1 g COD L?1) was used as co‐substrate in the two conditions. The hydraulic residence time was kept constant at 1 day. Both conditions showed similar TCP and Phe removal (99.9 + %); nevertheless, in the Methanogenic regime, the accumulation of 4‐chlorophenol (4CP) up to 16 mg L?1 and phenol up to 4 mg L?1 was observed, whereas in PAM conditions 4CP and other intermediates were not detected. The specific methanogenic activity of biomass decreased from 1.01 ± 0.14 in M conditions to 0.19 ± 0.06 mmolCH4 h?1 gTKN?1 in PAM conditions whereas the specific oxygen uptake rate increased from 0.039 ± 0.008 in M conditions to 0.054 ± 0.012 mmolO2 h?1 gTKN?1, which suggested the co‐existence of both methanogenic archaea and aerobic bacteria in the undefined consortium. The advantage of the PAM condition over the M regime is that it provides for the thorough removal of less‐substituted chlorophenols produced by the reductive dehalogenation of TCP rather than the removal of the parent compound itself. Copyright © 2005 Society of Chemical Industry 相似文献
9.
Xabier Sevillano José R. Isasi Francisco J. Peñas 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2012,87(3):402-409
BACKGROUND: Because of the lower fluidization energy required and the protection against shock loading and starvation due to their sorption capacity, light adsorbents such as hydrogels could be used as biofilm carrier media in fluidized bed bioreactors for wastewater processing. This work explores the feasibility of a cyclodextrin hydrogel as biomass support to degrade phenol under extremely low‐nitrogen availability and under nitrogen amendments. RESULTS: Phenol removal capacity was low (mean 0.589 kg m?3 day?1) under extreme nitrogen‐limited conditions (mean C:N ratio 3830). A pulsed nitrogen amendment increased the elimination capacity (up to 1.97 kg m?3 day?1) controlling the biofilm thickness. An 8‐h nitrogen pulse had a highly efficient long‐term effect removing 93.5 mg‐C mg?1‐N in 300 h. The continuous nitrogen amendment enhanced the elimination capacity (up to 5.84 kg m?3 day?1) although rapidly increasing the biomass growth. The inhibiting phenol concentration was smaller during the nitrogen‐limited period (below 100 mg L?1) than in the nitrogen‐amendment periods (140 mg L?1). Low liquid velocities were needed to fluidize the bioparticles (less than 3.1 mm s?1) during the entire experimentation. CONCLUSION: This work shows that a fluidized‐bed bioreactor with mixed culture on cyclodextrin‐based particles can be operated for long periods at extreme nitrogen limitation, and that a limited nitrogen supply with periodic pulsed amendments would be adequate for controlling the biofilm thickness. Copyright © 2011 Society of Chemical Industry 相似文献
10.
In the present study, attempts are made to optimize digestion time, initial feed pH, feed temperature, and feed flow rate (organic loading rate, OLR) for maximum yield of methane gas and maximum removal of chemical oxygen demand (COD) and biological oxygen demand (BOD) of sugar industry wastewaters in three‐phase fluidized‐bed bioreactor. Methane gas is analysed by using flame‐ionisation detector (FID). The optimum digestion time is 8 h and optimum initial pH of feed is observed as 7.5. The optimum temperature of feed is 40°C and optimum feed flow rate is 14 L/min with OLR 39.513 kg COD/m3 h. OLR is calculated on the basis of COD inlet in the bioreactor at different flow rates. The maximum methane gas concentration is 61.56% (v/v) of the total biogas generation at optimum biomethanation process parameters. The maximum biogas yield rate is 0.835 m3/kg COD/m3 h with maximum methane gas yield rate (61.56%, v/v) of 0.503 m3/kg COD/m3 h at optimum parameters. The maximum COD and BOD reduction of the sugar industry wastewaters are 76.82% (w/w) and 81.65% (w/w) at optimum biomethanation parameters, respectively. 相似文献
11.
Mathematical modelling of a continuous fluidized‐bed reactor has been carried out for non‐catalytic gas–solid reactions. The two‐phase bubbling bed model has been used and the elutriation phenomenon for the fine particles has been investigated. The feed stream consisting particles with size distribution and reversible or irreversible first‐order kinetics can be treated by the model. The reduction behaviour of solid reactants was described by the grain model. A program was developed in MATLAB software for solving the governing equations at conditions of different temperatures and pressures. The model was validated using experimental data and simulation results available in the literature for the iron ore reduction with a gas mixture containing hydrogen [Srinivasan and Staffansson, Chem. Eng. Sci. 45(5), 1253–1265 (1990)]. The mathematical modelling was also used for predicting the extent of reaction for reduction of cobalt oxide by methane. 相似文献
12.
Marcio A. Mazutti Giovani Zabot Gabriela Boni Aline Skovronski Débora de Oliveira Marco Di Luccio Maria Isabel Rodrigues Helen Treichel Francisco Maugeri 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2010,85(1):109-114
BACKGROUND: This work is focused on inulinase production by solid‐sate fermentation (SSF) using sugarcane bagasse, corn steep liquor (CSL), pre‐treated cane molasses, and soybean bran as substrates in a 3‐kg (dry basis) packed‐bed bioreactor. SSF was carried out by the yeast Kluyveromyces marxianus NRRL Y‐7571 and response surface methodology was used to optimize the temperature, air flow rate and initial mass of cells. RESULTS: The optimum inulinase activity (436.7 ± 36.3 U g?1 dry substrate) was obtained at 24 h at an inlet air temperature of 30 °C, air flow rate 2.2 m3 h?1 and 22 g of cells for fermentation. Inulinase productivity at these conditions was 18.2 U gds?1 h?1. Kinetic evaluation at the optimized conditions showed that the maximum inulinase production was verified at 24 h of fermentation. The carbon dioxide and the metabolic heat generation are directly associated with the consumption of total reducing sugars present in the medium. CONCLUSION: The high productivity achieved in this work shows the technical viability of inulinase production by SSF in a packed‐bed bioreactor. Copyright © 2009 Society of Chemical Industry 相似文献
13.
K Vidya Shetty Santosh Nandennavar G Srinikethan 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2008,83(9):1181-1189
BACKGROUND: A recent innovation in fixed film bioreactors is the pulsed plate bioreactor (PPBR) with immobilized cells. The successful development of a theoretical model for this reactor relies on the knowledge of several parameters, which may vary with the process conditions. It may also be a time‐consuming and costly task because of their nonlinear nature. Artificial neural networks (ANN) offer the potential of a generic approach to the modeling of nonlinear systems. RESULTS: A feedforward ANN based model for the prediction of steady state percentage degradation of phenol in a PPBR by immobilized cells of Nocardia hydrocarbonoxydans (NCIM 2386) during continuous biodegradation has been developed to correlate the steady state percentage degradation with the flow rate, influent phenol concentration and vibrational velocity (amplitude × frequency). The model used two hidden layers and 53 parameters (weights and biases). The network model was then compared with a Multiple Regression Analysis (MRA) model, derived from the same training data. Further these two models were used to predict the percentage degradation of phenol for blind test data. CONCLUSIONS: The performance of the ANN model was superior to that of the MRA model and was found to be an efficient data‐driven tool to predict the performance of a PPBR for phenol biodegradation. Copyright © 2008 Society of Chemical Industry 相似文献
14.
Jos S. Torrecilla Jos M. Aragn María C. Palancar 《European Journal of Lipid Science and Technology》2006,108(11):913-924
Olive pomace from the two‐phase method of olive oil extraction (two‐phase olive pomace) must be dried from about 65% [wet basis (wb)] to about 8%, in order to extract part of the remaining pomace oil (about 3 wb‐%). An innovative dryer based on a fluidized bed is developed in this study. The objective is to improve olive pomace drying with low energy cost and high product quality by using optimal operating conditions, e.g. temperature and air flow rate, feeding solid moisture, and a control system. The bed operating temperature was set at 125 °C to obtain a good olive pomace oil quality and to reduce the thermal power consumption and drying time. The dried material is rather homogeneous and contains a negligible amount of polycyclic aromatic hydrocarbons. The fluidized bed was further improved with a moving bed joined by a conical device to the fluidized‐bed freeboard. This is a powerful combination in which the moving bed acts as a pre‐dryer of the wet solid and also as a filter of the output gas, with more than 99.9% of fines retention. The mean power consumption of the improved fluidized‐moving‐bed plant is 1 kWh/kgwater; this means a significant reduction of power cost with respect to the rotary dryers, which require about 1.4 kWh/kgwater. 相似文献
15.
C
J Fung 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2002,77(10):1186-1190
This study compares the biological performance of three fluidised‐bed biological reactors under conditions of different headspace pressures. The application of pressure can have a profound effect on the initial rate of bed growth. However, once the fluidised‐bed reaches full expansion, the biological performance at higher pressures is greater than those at lower pressures. There appears to be an almost linear relationship between the application of pressure and the performance of the fluidised‐bed biological reactors in removing soluble BOD5. This can be attributed to the increase in the oxygen concentration in the bulk liquid and a greater oxygen penetration depth within the biofilm. © 2002 Society of Chemical Industry 相似文献
16.
Xi‐Zhong Chen Zheng‐Hong Luo Wei‐Cheng Yan Ying‐Hua Lu I‐Son Ng 《American Institute of Chemical Engineers》2011,57(12):3351-3366
A three‐dimensional (3‐D) computational fluid dynamics model, coupled with population balance (CFD‐PBM), was developed to describe the gas–solid two‐phase flow in fluidized‐bed polymerization reactors. The model considered the Eulerian–Eulerian two‐fluid model, the kinetic theory of granular flow, the population balance, and heat exchange equations. First, the model was validated by comparing simulation results with the classical calculated data. The entire temperature fields in the reactor were also obtained numerically. Furthermore, two case studies, involving constant solid particle size and constant polymerization heat or evolving particle‐size distribution, polymerization kinetics, and polymerization heat, were designed to identify the model. The results showed that the calculated results in the second case were in good agreement with the reality. Finally, the model of the second case was used to investigate the influences of operational conditions on the temperature field. © 2011 American Institute of Chemical Engineers AIChE J, 2011 相似文献
17.
Julian T S Dafoe Andrew J Daugulis 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2011,86(11):1379-1385
BACKGROUND: A solid‐liquid two‐phase partitioning bioreactor (TPPB) was used in the biotransformation of indene to cis‐(1S,2R)‐indandiol by Pseudomonas putida 421‐5 (ATCC 55687). Metered substrate feeding in single‐phase operation, or delivery from an immiscible liquid, have previously been employed to regulate the exposure of the biocatalyst to inhibitory concentrations of the substrate. In contrast, the solid‐liquid platform provided in situ substrate addition (ISSA) as well as simultaneous it in situ product removal (ISPR) as a means of overcoming substrate and product toxicity. Three different modes of operation were compared for their effects on the performance of this biotransformation: single‐phase, fed‐batch operation was carried out as a benchmark in 2.75 L aqueous medium, and subsequently with the inclusion of either 700 g liquid silicone oil or 700 g solid polymer beads. RESULTS: Biphasic modes achieved a 3‐fold productivity improvement with respect to single‐phase (30 to 90 mg L?1 h?1), and solid‐liquid productivity was similar to liquid‐liquid operation while achieving more extensive removal of inhibitory compounds resulting in a slightly higher product titer (1.29 vs 1.16 g L?1). The operability of the reactor was improved by the phase stability of the solid polymer beads relative to immiscible organic solvents, preventing emulsion formation and facilitating analytics. CONCLUSION: Solid polymer beads replaced the immiscible liquid auxiliary phase for substrate delivery while performing simultaneous inhibitory molecule sequestration. Copyright © 2011 Society of Chemical Industry 相似文献
18.
Rochelle C Harding Gordon A Hill Yen‐Han Lin 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2003,78(4):406-411
An external loop airlift bioreactor (ELAB) has been used to capture and degrade toluene from a contaminated air stream. Using a spinning sparger, the toluene could be transferred from small, uniform bubbles into the aqueous culture media with an overall mass transfer coefficient as high as 1.1 h?1. Due to the very volatile nature of toluene, Pseudomonas putida (ATCC 23973) was cultured and maintained on benzyl alcohol, the first intermediate compound in the metabolic degradation pathway for toluene. Consequently, before successful continuous operation of the ELAB with toluene‐contaminated air, Pseudomonas putida was acclimatized to toluene by using 30 min intermittent sparging of contaminated air into the bioreactor. Continuous sparging of toluene‐contaminated air could then be successfully carried out with 100% capture and biodegradation efficiency at a contaminated air concentration of 15 mg dm?3 and a loading rate of 35 mg dm?3 h?1. Higher concentrations and loading rates were only partially degraded. Although this capture matches only the low rates reported earlier using biofilters to remediate toluene, the ELAB operates using submerged culture and requires no packing which can plug during biofilter operation. In this study, Pseudomonas putida grew on toluene at a maximum specific growth rate of only 0.05 h?1. © 2003 Society of Chemical Industry 相似文献
19.
20.