首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以氯化钙为氯化剂,采用氯化焙烧-水浸取的方法处理钡渣,钡渣中的钡以氯化钡的形式被回收。通过焙烧温度、焙烧时间、氯化剂用量等一系列条件实验确定了适宜工艺条件:焙烧温度为1 000 ℃、焙烧时间为45 min、氯化钙用量为理论量的1.3倍。在此条件下钡渣中的酸溶钡可全部回收,钡的回收率为86.8%。浸出液主要成分是氯化钡和氯化钙,经过蒸发浓缩、结晶析出氯化钡产品,其质量符合GB/T 1617—2014《工业氯化钡》的要求。  相似文献   

2.
采用改进的热还原技术从废旧正极片中有效回收锂,其中使用廉价的尿素作为提供氨(NH3)的唯一添加剂,考察了烧结温度、保温时间、质量比以及填充率对Li浸出率的影响。结果表明,在烧结温度为550℃、保温时间15 min、质量比1:2、填充率180 g/L的条件下,NCM材料中的Li浸出率达99.98%,基本没有其它金属浸出;而在烧结温度为600℃、保温时间30 min、质量比1:2、填充率180 g/L的条件下,LMO材料中的Li浸出率也高达98.49%。  相似文献   

3.
采用机械化学活化方法,在机械活化过程中用K2SO4为活化添加剂,强化锂云母中惰性Li?O配位结构活化转型,通过温和稀酸浸出高效分离锂,考察了活化过程添加剂用量、球磨时间和球料比及浸出条件如酸浓度、液固比、搅拌速度、温度和时间等对锂回收率的影响,确定了最佳工艺条件,讨论了反应过程机理。结果表明,机械化学活化强化破坏云母片层结构中的Si?O?K结构,降低了Si?O配位结构对Li?O配位结构的牵制力,导致Li?O键强减弱,反应活性增加。在最优条件下(精矿与K2SO4质量比5:1,球磨机转速500 r/min,球料质量比20:1,球磨时间3 h,硫酸浓度15vol%、液固比4 L/g、反应温度80℃、浸出搅拌速率200 r/min),锂浸出率可达99.1%。  相似文献   

4.
针对当前废稀土荧光粉综合回收利用率低、不当处理造成环境污染严重等问题,采用硫酸化焙烧?水浸法处理废稀土荧光粉,考察了焙烧温度对物料形态的影响及焙烧温度、浓硫酸添加量对稀土氧化物浸出效果的影响,并对该工艺进行了初步环保评估。结果表明,在焙烧温度300℃、时间120 min、浓硫酸与废粉质量比为1.85及浸出温度25℃、时间120 min、液固质量比2:1的条件下,4种稀土氧化物的回收率分别为Y2O3 98.82%, Eu2O3 97.39%, CeO2 96.58%和Tb4O7 98.77%。硫酸化焙烧可使稀土分解为可溶性的硫酸盐和磷酸盐,并保证渣为环保的低放渣。浓硫酸添加量对4种稀土氧化物浸出率影响较大,焙烧温度对CeO2和Tb4O7浸出效果影响显著,在浓硫酸与废粉质量比1.85、浸出温度25℃、时间均为120 min的条件下,CeO2和Tb4O7的浸出率分别由焙烧温度200℃时的40.18%和37.18%提高至300℃时的96.58%和98.77%。稀土荧光粉在300℃下焙烧不会产生SO2和SO3等有害气体,焙烧过程中放出的气体主要为水蒸气和挥发的硫酸,物料失重约为10%。该工艺避免了焙烧过程中产生大量含硫、含氟、强酸性废气及难溶解的焙烧废渣,同时减少了环境污染及部分稀土资源浪费,具有广阔的工业应用前景。  相似文献   

5.
通过单因素实验和正交实验研究了铝土矿硫酸焙烧与水浸提铝铁过程中焙烧温度、焙烧时间和酸/矿摩尔比对铝和铁提取率的影响. 结果表明,在酸/矿摩尔比3.75:1、焙烧温度325℃,焙烧时间2.5 h的条件下,Al提取率达98%, Fe提取率达80%,各因素对铝铁提取率的影响顺序为:酸/矿摩尔比>焙烧温度>焙烧时间. 该工艺具有焙烧温度低、金属提取率高等特点,对铝土矿的开发利用具有重要的意义.  相似文献   

6.
稀土具有优异的光性能、电性能、磁性能等,是电子、化工、冶炼、机械、军事等多个行业不可替代的矿产资源。我国的稀土资源中很大比重为氟碳铈稀土矿,这种矿产资源提取稀土元素的难度较大,因为矿存在氟碳酸根,不能直接进行酸化、碱化等反应处理,这就需要先进行焙烧活化。基于此,本文就重点对氟碳铈稀土矿的焙烧工艺展开探讨,希望能为相关领域从业者及科研人员提供些许参考。  相似文献   

7.
建立了微波消解离子色谱法测定锂云母中铷、铯含量的方法。通过实验确定了样品处理条件、淋洗液浓度和淋洗液流速。方法对铷和铯的检出限分别为0.012 mg/L和0.013 mg/L,线性相关系数r大于0.999 9。对实际锂云母样品进行重复6次测定,并做了加标回收实验,相对标准偏差RSD为0.38%,加标回收率为97.39%~102.8%。经国家标准品验证,测定值与标准值相符。该方法快速准确,能达到测定锂云母中铷、铯含量的分析要求。  相似文献   

8.
本文通过对废旧磷酸铁锂和钛酸锂复杂料进行热解试验,热解过程大致可分为四个阶段:少量的水分挥发阶段、树脂分解阶段、磷酸铁锂被氧化阶段和分解阶段。同时,升温速率越快,最大质量损失曲线向高温区移动。对废旧磷酸铁锂正极的硫酸熟化-水浸试验,得出熟化温度为200℃、熟化时间40min、酸料比0.8mL/g和硫酸浓度18mol/L为最优熟化条件,锂的浸出率可达到97.94%以上。  相似文献   

9.
以Na_2CO_3为钠化剂,对高炉富硼渣采用低温钠化焙烧—水浸方法制取硼砂,考察了焙烧温度、焙烧时间、Na_2CO_3加入量、高炉富硼渣粒度、浸出温度、浸出时间、液固比等对硼浸出率的影响。高炉富硼渣中主要组分为镁橄榄石(Mg_2SiO_4),硼元素主要以玻璃态存在。试验结果表明,低温钠化焙烧过程和水浸过程对硼浸出率有显著影响,这是因为钠化焙烧使硼转化成了可溶性的硼酸钠盐,有利于硼的浸出。试验获得的最佳工艺参数如下:高炉富硼渣颗粒200目通过率为98.56%、Na_2CO_3加入量为理论量的4倍、焙烧温度为700℃、焙烧时间为4h、浸出温度为95℃、水浸时间为2h、液固比为10∶1;在此条件下,硼的一次常压水浸浸出率为71.81%,水浸滤液经除杂、蒸发浓缩后获得了结晶良好的硼砂产品,纯度为96.3%。  相似文献   

10.
用硫酸从锂云母中提取铯,采用正交设计表安排实验,用火焰原子吸收光谱法检测铯,以Cs2O水溶性浸出物含量为指标,对硫酸的质量分数,反应时间,液固质量比进行考察。结果表明,最佳工艺条件为:硫酸的质量分数为40%,反应时间为8 h,液固比为3∶1。在最佳条件下,100 g锂云母可提取Cs2O约150 mg。  相似文献   

11.
李根  杨洁  杨静 《硅酸盐通报》2017,36(5):1599-1604
锂作为最轻的金属,具有密度低、化学活性强等特性,因而锂及其化合物在可充电电池、电子器件、陶瓷、玻璃、医疗设备等领域有着不可替代的作用.锂云母矿为重要的锂资源之一,如何高效经济地分解锂云母和溶出其中的锂,是利用锂云母矿提取锂进而制备各类锂化合物的关键.本文主要对酸法、碱法和盐法三种分解锂云母技术和最新研究进展进行了评述:酸法可降低反应温度,但需要大量碱性物质中和余酸、除去溶液中的Al3+;碱法助剂廉价,环境比较友好,但废渣量大且难以全部利用;盐法可以在保证产率的同时使焙料蓬松,氯化物价格低廉,但硫酸盐溶液易形成复盐难以提纯,且氯化物对设备腐蚀严重.由此,在工业化利用锂云母矿时,需要从环境影响、锂的溶出率和设备寿命等方面,因地制宜地选择最适合的工艺技术.  相似文献   

12.
采用正交法优化了锂云母中钾的提取条件.以100 g锂云母提取K2O的量为指标,采用火焰原子吸收光谱进行检测,考察了硫酸质量分数、反应时间和液固质量比3个主要因素对从锂云母中溶出钾的影响.通过正交实验确定锂云母中钾的最佳提取条件为:硫酸质量分数40%、反应时间8h、液固质量比2.5:1(g:g).  相似文献   

13.
研究了硫酸铵法利用宜丰中低品位[w(氧化锂)<2.0%]锂瓷土矿制备碳酸锂后的提锂母液进一步提取铷铯等贵金属的技术路线。一次碳化提锂后的母液中还含有若干溶解的铷、铯等金属的硫酸盐类,采用分步结晶法,结晶母液降温析出过程中,在温度高的前段步骤析出的是铷铯等溶解度较低的矾盐,而温度低的后段步骤析出的是钾铵等溶解度高的矾盐,从而达到铷铯矾与铵钾矾等初步分离的目的。将成矾除铝阶段硫酸铝钾、硫酸铝铵等矾盐,以焙烧分解的形式继续分出硫酸钾和氧化铝。  相似文献   

14.
《应用化工》2022,(12):3043-3045
研究了以氧化钙代替氢氧化钠用于高压蒸汽法处理锂云母提锂工艺实验。结果显示,氧化钙的加入,能较好地降低综合成本,而且,反应后的钙较易除去,简化了后续除杂、提锂工艺的步骤。经过对蒸汽压力、氧化钙与锂云母的质量比、反应时间、锂云母颗粒大小等因素对锂云母中锂转化率影响的研究,确定氧化钙-锂云母高压蒸汽法处理锂云母提锂工艺的优化条件是:蒸汽压力为11.0 MPa,氧化钙与锂云母的质量比为1.4,反应时间为3.5 h,锂云母颗粒大小为106μm。  相似文献   

15.
研究了用氯化铵作为氯化剂氯化焙烧碳酸钙制备无水氯化钙的工艺条件,通过单因素实验考察了焙烧温度、物料配比、焙烧时间及物料装载厚度的影响,并用XRD对无水氯化钙进行了表征。结果表明氯化焙烧法制无水氯化钙的最佳工艺条件为:焙烧温度为450 ℃、焙烧时间为60 min、氯化铵与碳酸钙物料配比n(氯化铵)∶n(碳酸钙)=3∶1、物料装载厚度大于1 cm。此条件下碳酸钙的转化率为95.8%、焙烧产物氯化钙的质量分数为94.96%。用工业级原料焙烧时,选用粒径为10.5 μm的工业重钙与工业氯化铵焙烧120 min,碳酸钙的转化率为95.19%,无水氯化钙的质量分数为94.83%。  相似文献   

16.
简述了煤系高岭土的矿物组成和加工利用特点;通过氯化焙烧试验对煤系高岭土的精选进行可行性探索,结果表明:氯化焙烧法是针对煤系高岭土特点进行精选除铁、除钛、除碳的有效途径  相似文献   

17.
采用正交试验的方法,从焙烧温度、硫酸浓度、浸液时间、物料比4个因素来讨论其对锂云母精矿中氧化锂的浸出率的影响。试验结果表明,在900 ℃焙烧后的锂云母与70%的硫酸以质量比为1∶1的比例在130 ℃的恒温箱中反应15 min的条件下,氧化锂的浸出率可以达到75%。采用XRD和SEM等方法进行了表征分析,结果表明, 制备的碳酸锂纯度较高,有较好的应用价值。  相似文献   

18.
随着磷酸铁锂电池新能源车产销量迅速增长,如何有效回收废旧磷酸铁锂动力电池并实现有价金属的资源化利用已成为研究热点。提出一种钠盐辅助焙烧磷酸铁锂废粉和水浸回收锂盐的工艺。在氧气气氛中磷酸铁锂废粉与一水硫酸氢钠反应生成硫酸钠锂、磷酸铁、三氧化二铁,然后通过选择性浸出、分离、沉淀得到纯度高达99.58%的磷酸锂、纯度达到99.6%的磷酸铁。对一水硫酸氢钠与磷酸铁锂废粉质量比、氧化焙烧温度、焙烧保温时间和焙烧产物水浸时间等工艺条件进行了研究,结果表明一水硫酸氢钠与磷酸铁锂废粉质量比为1.6、氧化焙烧温度为600℃、焙烧保温时间为60 min、焙烧产物室温水浸时间为70 min为最佳回收工艺参数,在此条件下锂离子浸出率为98.7%。该工艺在温和条件下实现了有价金属的选择性回收,有助于废旧磷酸铁锂电池资源化利用。  相似文献   

19.
中国钾盐资源匮乏,而钾长石是一种重要的钾赋存形式。然而,钾长石的开发技术难度大、成本高,至今尚未实现工业化应用。为了解决钾长石开发利用过程中钾提取温度高、浸出率低等问题,该研究选取了贵州铜仁地区钾长石矿为研究对象,探究了钾长石-硫酸钠-碳酸钙混盐的焙烧-浸出过程,考察了钾长石-硫酸钠-碳酸钙的焙烧配比、焙烧温度、焙烧时间、浸取剂浓度等因素对钾长石中钾元素浸出率的影响。实验结果显示,在焙烧体系均匀混合、焙烧温度为800~900℃、焙烧时间为1 h、m(钾长石)∶m(硫酸钠)∶m(碳酸钙)为(1∶1∶6)~(1∶1∶8)条件下,以质量分数为5%NaOH溶液作为浸取液,钾的浸出率可高达99.79%。该研究提供了一条提高钾长石资源利用效率、解决钾盐资源供应问题的新途径,并为相关工业生产提供了有力的技术支持。  相似文献   

20.
本文介绍了锂云母提取碳酸锂的两种不同的方法,主要以酸溶法为例,通过实验了解了锂云母制备碳酸锂的过程以及制备过程中需要注意的细节等,对未来的发展进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号