首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study concerns with the investigation of the effect of irradiation conditions on grafting of styrene into FEP films by the pre‐irradiation method. EPR spectroscopy was used to characterize the base polymer material regarding the trapped radical species and their concentration. Radiation‐induced changes in the chemical structure were studied by IR spectroscopy. Tensile strength and elongation at break as well as yield of grafting were found to be strongly influenced by irradiation temperature. Main‐chain scissions were identified to be the reason for the deterioration of the mechanical properties after radiation treatment at temperatures below glass transition temperature.

  相似文献   


2.
Summary: The perfluorinated copolymer poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) was electron beam irradiated under vacuum at various temperatures ranging from room temperature to a temperature above the melting temperature of FEP. Changes of the chemical structure were analyzed by 19F solid‐state NMR and IR spectroscopy. Trifluoromethyl end groups were generated as a result of main chain scission at all irradiation temperatures studied. In addition, trifluoromethyl side groups in various environments and double bond structures were formed. Quantitative analysis showed that long‐chain branches were formed at irradiation temperatures above 200 °C. Furthermore, the hexafluoropropylene (HFP) units in FEP were found to be less sensitive to radiation than the perfluoropropyl vinyl ether (PPVE) units in poly[tetrafluoroethylene‐co‐(perfluoropropyl vinyl ether)] (PFA).

19F solid‐state NMR spectra of FEP.  相似文献   


3.
Two fully fluorinated polymers, poly(tetrafluoroethylene) (PTFE) membranes and poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films, were modified by graft copolymerization with monoacryloxyethyl phosphate (MAEP) in an aqueous solution at ambient temperature using gamma irradiation. The modified membranes were characterized by XPS, FTIR, and phosphate analysis. A correlation between peak heights in the FTIR PAS spectra and the overall grafting yield was found. Neither the surface coverage (as obtained from XPS multiplex scans) nor the overall grafting yield (as obtained from phosphate analysis) showed simple correlations on the monomer concentrations (20–40%) or the irradiation doses (25–150 kGy) within the ranges investigated. Similar surface coverage was achieved on the PTFE membranes and on the FEP films. In contrast, the overall grafting yields were significantly higher for the PTFE membranes than for the FEP films. The high porosity of the PTFE membranes is the most likely explanation for these differences in grafting. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2550–2556, 2002  相似文献   

4.
Tetrafluoroethylene–hexafluoropropylene (FEP) copolymer sheets were modified by remote H2, N2, O2, and Ar plasmas, and the effects of the modification on adhesion between FEP sheets and copper metal were investigated. The four plasmas were able to modify the FEP surfaces' hydrophilicity. Defluorination and oxidation reactions on the FEP surfaces occurred with exposure to the plasma. The hydrophilic modification by H2 plasma was best, followed by modification by O2, Ar, and N2 plasmas. The surface modification of FEP by all four remote plasmas was effective in improving adhesion with copper metal. The peel strength order of the FEP/Cu adhesive joints was H2 plasma > Ar plasma > N2 plasma > O2 plasma. Mild surface modification is important for the adhesion improvement of FEP with Cu metal. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1258–1267, 2002  相似文献   

5.
The molecular mobility in copolymers of vinylidene fluoride–hexafluoropropylene VDF/HFP of 93/7 and 86/14 ratios has been investigated by means of broadband dielectric relaxation spectroscopy (10?1–107 Hz), differential scanning calorimetry DSC (?100 to 150°C), and of wide angle X‐ray diffraction WAXS. Four relaxation processes and one ferroelectric‐paraelectric phase transition have been detected. The process of the local mobility β‐ (at temperatures below glass transition point) is not affected by chemical composition of the copolymer and the formed structure. Parameters of segmental mobility in the region of glass transition (αa‐relaxation) depend on the ratio of comonomer with lower kinetic flexibility. αc‐relaxation is clearly observed only in VDF/HFP 93/7 copolymer, which is characterized by a higher crystallinity and a higher perfection of crystals of α‐ (αp‐) phase. Diffuse order–disorder relaxor type ferroelectric transition connected with the destruction of the domains in low‐perfect ferroelectric phase in the amorphous regions has been detected for both copolymers. An intensive relaxation process (α‐process) was observed for both copolymers in high‐temperature region. DSC data shows that it falls on the broad temperature region of α‐phase crystals melting. It is considered to be connected with the space charge relaxation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
The structure and properties of fibers prepared from copolymers of poly(ethylene terephthalate) (PET) in which 2‐methyl‐1,3‐propanediol (MPDiol® Glycol is a registered trademark of Lyondell Chemical Company) at 4, 7, 10, and 25 mol% was substituted for ethylene glycol were studied and compared with those of PET homopolymer. Filaments were melt spun over a range of spinning conditions, and some filaments that were spun at relatively low spinning speeds were subjected to hot drawing. The filaments were characterized by measurements of birefringence, differential scanning calorimetry (DSC) crystallinity, melting point, glass transition temperature, wide‐angle X‐ray diffraction patterns, boiling water shrinkage, tenacity, and elongation to break. Filaments containing 25 mol% MPDiol did not crystallize in the spinline at any spinning speed investigated, whereas the other resins did crystallize in the spinline at high spinning speeds. However, compared with PET homopolymer, increasing substitution of MPDiol reduced the rate at which the crystallinity of the melt spun filaments increased with spinning speed and reduced the ultimate crystallinity that could be achieved by high‐speed spinning. The rate of development of molecular orientation, as measured by birefringence, also decreased somewhat with increasing MPDiol content. Shrinkage in boiling water decreased at high spinning speeds as the amount of crystallinity increased; however, the shrinkage decreased more slowly with increase in spinning speed as MPDiol content increased. Tenacity also decreased slightly at any given spinning speed as MPDiol content increased, but there was no significant effect on elongation to break. The addition of MPDiol in amounts up to 7 mol% increased the maximum take‐up velocity that could be achieved at a given mass throughput. This result indicates that the use of higher spinning speeds could potentially increase the productivity of melt spun yarns. Copolymer filaments spun at low speeds were readily drawn to produce highly oriented fibers with slightly less birefringence, crystallinity, and tenacity than similarly processed PET homopolymer. Preliminary dyeing experiments showed that the incorporation of MPDiol improved the dyeability of the filaments. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2598–2606, 2003  相似文献   

7.
Relaxation processes in copolymers of vinylidene fluoride with hexafluoropropylene (93/7) were studied by means of a dielectric method. The initial extruded film was recrystallized by free heating to temperatures above the melting point and by subsequent cooling. This increased both the perfection of the crystal phase and the degree of crystallinity. The impact of recrystallization on both the relaxation times (τ's) and the activation parameters of the local mobility (β process) and micro‐Brownian cooperative mobility in amorphous phase (αa process) was almost negligible, whereas the τ's of the αc relaxation were an order of magnitude higher after recrystallization. Qualitatively, it was predicted by the soliton model for the αc relaxation. The recrystallization affected characteristics of the transition at the highest temperature (α) registered in the region of the melting of the crystals even more. The process is related to the relaxation of the space charge formed by ionogenic impurities, which migrate through the amorphous phase with high free volume. It was shown that the dynamics in the amorphous phase controlled the drift mobility of free charge carriers and, by that, determined the τ of the space charge relaxation process. The structuring processes during the recrystallization also affected the parameters of the order–disorder transition in the low‐perfect ferroelectric (antiferroelectric) phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The melt spinning and melt drawing of poly(L ‐lactic acid) (PLLA) were carried out with a melt‐spinning machine, and the mechanical properties, structure, and biodegradability of PLLA fiber were investigated. PLLA fiber with a tensile strength of 0.81 GPa was successfully obtained through two steps of drawing at a draw ratio of 18 in hot water. This fiber had enough tensile strength for common engineering use. The fiber could be degraded under controlled composting conditions at 70°C for 1 week. In scanning electron microscopy observations of the fiber, a regular pattern of cracks running along the vertical direction to the fiber axis was clearly observed. This suggested that the PLLA fiber built up a highly ordered structure arranged along the direction of the fiber axis. After the fiber was left to lie in the ground for 1 year, however, the surface of the fiber was still smooth, and the tensile strength did not decrease much. This PLLA fiber could not be hydrolyzed after 1 month of steeping in a buffer solution at 37°C, but it was rapidly hydrolyzed at more than 60°C. It was suggested that the degradation (hydrolysis) rate of PLLA depended on the glass‐transition temperature. Upon hydrolysis at 80°C for 48 h, a regular crack along the vertical direction to the fiber axis was found that was very similar to that observed in degradation under composting conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2118–2124, 2005  相似文献   

9.
Various fluorinated polymers were investigated to produce polymer nanocomposites with special clays. Natural and organically treated montmorillonite clays were melt‐compounded with the polymers. Characterization by wide‐angle X‐ray scattering and transmission electron microscopy showed the separation of montmorillonite layers and the formation of polymer nanocomposites. Organically treated montmorillonite clay dispersed in poly(vinylidene fluoride) and various vinylidene fluoride copolymers and formed nanocomposites. Natural and organophilic clays were not well dispersed in other fluorinated copolymers and polyethylene. A correlation was developed for the formation of polymer–clay nanocomposite structures in chlorinated and fluorinated polymers in terms of the dielectric constant. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1061–1071, 2004  相似文献   

10.
Poly (ε‐caprolactone) fibers were prepared by dry‐spinning method. The effect of processing parameters on linear density, mechanical, and morphological properties of fibers was investigated using the response surface methodology (RSM). This method allowed evaluating a quantitative relationship between polymer concentrations, spinning speed, and draw ratio on the properties of the fibers. Polynomial regression model was fitted to the experimental data to generate predicted response. The results were subjected to analysis of variance to determine significant parameters. It was found that all three parameters had significant effect on linear density of fibers. Combined effect of concentration and spinning speed was observed in which the linear density of fiber was more sensitive to changes in the solution concentration at lower spinning speed. Polymer concentration had the largest influence on the mechanical properties of fibers. An average cross‐sectional radius of fibers was affected by concentration and draw ratio in opposite manner. Among all three parameters, only polymer concentration had significant effect on circularity of fiber cross sections. By applying the RSM, it was possible to obtain a mathematical model that can be used to better define processing parameters to fabricate dry‐spun PCL fiber in a more rational manner. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42113.  相似文献   

11.
The permeation resistance of perfluoroalkoxy (PFA), a polytetrafluoroethylene (PTFE) copolymer, to various gases was explored. The diffusion and permeability coefficients for hydrogen, oxygen, nitrogen, and air were measured with extruded films using standard manometric techniques. For thicker films, transport properties were independent of film thickness. For the thinnest films, the diffusivity and permeability coefficients were slightly higher because of reduced crystallinity. The solubility of these apolar permeants in PFA was quite low and behaved ideally. Therefore, the permeation characteristics of air could be calculated from those of nitrogen and oxygen. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2122–2125, 2006  相似文献   

12.
As one type of high‐performance fibers, the polyimide fibers can be prepared from the precursor polyamic acid via dry‐spinning technology. Unlike the dry‐spinning process of cellulose acetate fiber or polyurethane fiber, thermal cyclization reaction of the precursor in spinline with high temperature results in the relative complex in the dry‐spinning process. However, the spinning process is considered as a steady state due to a slight degree of the imidization reaction from polyamic acid to polyimide, and therefore a one‐dimensional model based on White‐Metzer viscoelastic constitutive equation is adopted to simulate the formation of the fibers. The changes of solvent mass fraction, temperature, axial velocity, tensile stress, imidization degree, and glass transition temperature of the filament along the spinline were predicted. The effects of spinning parameters on glass transition temperature and imidization degree were thus discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A new coordinate expansion based on a Taylor series is used to derive the one‐dimensional approximation to unsteady isothermal jet flows. The expansion procedure is carried out for an isothermal, Newtonian jet with no surface tension and air drag, and it can be used to derive a higher order approximation to the flow field. Two new formulations have been derived for the eigenvalue problem for fiber spinning stability for negligible inertia and gravity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 986–993, 2004  相似文献   

14.
Nanocomposite fibers of polypropylene and montmorillonite‐based organoclay were produced by a melt‐spinning process, and their structures and mechanical properties were studied. The addition of nanoclay in polypropylene increased the rate of crystallization and altered the microstructures of the fibers. Increases in the crystal size and a reduction in the molecular orientation were observed in the nanoclay–polypropylene composite fibers. The tensile properties of nanoclay composite fibers were also studied, and decreases in the fiber modulus and tenacity and increases in the strain at break were observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
In this study, we demonstrated that vinylbenzyl chloride (VBC), a versatile monomer with reactive a chloromethyl group could be grafted onto a poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) film without a degradation of the chloromethyl group during a simultaneous irradiation process. The effects of various irradiation conditions such as the total dose, dose rate, solvent, and VBC concentration on the degree of grafting of VBC onto a FEP film were also investigated. The prepared PVBC‐grafted films were characterized using FTIR, TGA, and SEM EDX. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A new melt‐processable PTFE material is presented and characterized that provides new and economical solutions in polymer technology while bridging the gap between perfluorinated PTFE and fluorothermoplastic materials such as perfluoroalkoxy resins. Thermal transitions, MW and MWD, and microstructures of the melt‐processable PTFE materials are investigated and compared to standard PTFE, modified PTFE, and PFA materials. The influence of the polymerization type used for the preparation of the melt‐processable PTFE (emulsion and suspension polymerization) on the MWD and the comonomer distribution are discussed.

  相似文献   


17.
Spinnability of polyacrylonitrile (PAN) solution was studied based on the spinning dynamics simulation and dry‐jet wet spinning experiments. The spinnability phenomenon was observed from the extruding and extending spinning experiments. The suitable conditions of normal extruding and extending of the PAN solution were obtained and the critical spinnability conditions were simulated. The experimental and simulation results showed that pressure drop through the spinneret was similar, while the temperature, velocity, and velocity gradient through the spinneret of PAN solution changed dramatically. It suggests that pressure drop can be chosen as one of the spinnability criterion for solution extruding and filaments forming during dry‐jet wet spinning. Furthermore, the effect of spinneret parameters and spinning conditions on spinnability was simulated. It shows that spinneret entrance angle, outlet channel length and width have impacts on the pressure drop and the die swell ratio, which suggests the spinneret design can be optimized to regulate the spinnability according to the simulation results. It is also found that some bad situations of spinnability such as sticking phenomenon can be avoided by decreasing spinning temperature or increasing mass flow rate to increase the pressure drop at a certain level under the premise of extruding smoothly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46377.  相似文献   

18.
This article reports an investigation of the formation of hollow fibers in a melt‐spinning process. Experimental results indicate that die swelling is largely responsible for a negative effect on hole formation. The factors that positively affect die swelling, including a decrease in temperature, a decrease in capillary length, and an increase in shear rate, are thus not recommended for the spinning of hollow fibers. For vinyl‐type polymers such as polypropylene, in which the apparent elasticity leads to serious die swelling, the formation of hollow fibers is more complex than that of a typical condensation polymer. Our results further demonstrate that when hollow fibers are being made in a variety of shapes (but of the same denier), spinning a polygonal hollow fiber is significantly more unstable than spinning a circular one. Moreover, an asymmetric bridge along the polygonal contour leads to a melt twist and interrupts the entire spinning process. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2896–2902, 2001  相似文献   

19.
An ultra‐high molecular weight polyethylene (UHMW‐PE) fiber was prepared by gel spinning using general kerosene as the solvent and gasoline as the extraction solvent. The process of the phase separation of gel as‐spun, spun under various spinning conditions, was investigated. Its extracting and drying process were also studied. The results reveal that the gel as‐spun, spun under a lower spin draft and a lower spin quenching temperature, extracted in times and dried under free‐shrinkage, exhibits a good afterdrawability that eventually endows the fiber with excellent mechanical behaviors. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 670–675, 1999  相似文献   

20.
Cellulose nanocrystals (CNCs) have received considerable attention recently because CNCs can be produced from renewable materials such as straw, wood, cotton, and sea animals (tunicates). CNCs are one of the stiffest organic materials, with an estimated tensile modulus (E) of 80–160 GPa depending on the starting material. In addition, composites incorporating CNCs have been fabricated from a variety of polymer matrices and CNCs have been shown to increase the E significantly and to a lesser extent the tensile strength (TS). A copolymer of poly(vinylidene fluoride) (PVDF), PVDF‐co‐hexafluoropropylene) (PVDFHFP), has received interest over the years in the area of lithium ion battery separator technology. However, the mechanical properties of neat PVDFHFP do not meet the necessary requirements for commercial separators, especially the low E. In this work, novel PVDHFHFP/CNC nanocomposite films were fabricated and characterized. It was found that incorporation of CNCs improves the E and TS. The improvement in mechanical properties of PVDFHFP upon addition of CNCs makes PVDFHFP a more suitable candidate for polymer separators in lithium ion batteries. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号