首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-Zr O_2 and PEEK particles were synergistically filled in unfilled PTFE to improve the wear resistance and maintain a relatively low friction coefficient, and the materials were studied using a reciprocating sliding friction and wear tester. In the friction tests, the evolution of various tribological characteristics in both the contact interfaces and debris was observed, and the wear mechanism of the PTFE composites was investigated. The results showed that the wear rate of the PTFE composites synergistically filled with nano-Zr O_2 and PEEK was lower and its friction coefficient was slightly higher than that of the unfilled PTFE; the uniformity and continuity of the transfer film generated by the composite with nano-Zr O_2 and PEEK were the best, and the particle size of the debris was minimal in comparison to that in other sample systems.  相似文献   

2.
混杂增强AZ91复合材料的制备及其显微组织和性能   总被引:3,自引:0,他引:3  
采用挤压铸造方法制备了以AZ91镁合金为基体、Al2O3短纤维(Al2O3f)和石墨颗粒(Grp)混杂为增强体的复合材料。观察了不同复合材料的显微组织,测试了其力学性能,并对其摩擦磨损性能进行了研究。结果表明:用此法制备的镁基复合材料增强相分布均匀,与基体结合紧密。硬度随Grp体积分数的增加而降低,Al2O3f的加入能提高复合材料的硬度。抗拉强度和伸长率都随Grp体积分数的增加而减小。Grp体积分数增加,磨损质量损失和摩擦系数都降低。随着摩擦过程的进行,在试样表面逐渐形成一层黑色连续的润滑膜。  相似文献   

3.
采用热压烧结方法制备了氧化铝/碳化钛复合陶瓷,对材料的摩擦因数和磨损率进行测量,研究了AlTiC中间合金增韧补强氧化铝陶瓷摩擦磨损行为与机制.探讨了氧化铝基精密结构陶瓷的摩擦磨损特性以及力学性能和微观结构对摩擦磨损特性的影响.结果表明,在室温和干摩擦条件下,滑动摩擦因数随法向载荷和转速的增加有下降趋势.室温下新型氧化铝基复相陶瓷材料的磨损机制以微观切削为主.  相似文献   

4.
To verify the effect of Al_2O_3 particle content and size as an abrasive on resin matrix friction materials for mining equipment, the tribological performance of friction materials was studied by using a blockon-ring tribotester over a wide range of applied load and sliding speed. The testing conditions simulated brake conditions of mining equipment. The antiwear property of nano-Al_2O_3 was superior to that of micro-Al_2O_3 for friction materials. The friction coefficients of specimens increased with the increase of nano-Al_2O_3 content. The wear rates decreased with increasing nano-Al_2O_3 content. The wear rates of specimens containing nano-Al_2O_3 was about 2-8 times lower than that of specimen with micro-Al2O3. The specimen with 10.5 vol% nano-Al_2O_3 showed the best tribological properties. The wear mechanism of specimens with nano-Al_2O_3 was abrasive wear and plastic deformation.  相似文献   

5.
采用热压烧结方法制备了氧化铝/碳化钛复合陶瓷,对材料的摩擦因数和磨损率进行测量,研究了AlTiC中间合金增韧补强氧化铝陶瓷摩擦磨损行为与机制,探讨了氧化铝基精密结构陶瓷的摩擦磨损特性以及力学性能和微观结构对摩擦磨损特性的影响。结果表明,在室温和干摩擦条件下,滑动摩擦因数随法向载荷和转速的增加有下降趋势,室温下新型氧化铝基复相陶瓷材料的磨损机制以微观切削为主。  相似文献   

6.
Polytetrafluoroethylene(PTFE) is a commonly used seal material for oil-free engine that is well known for its excellent tribological properties. In this work, the nano-ZrO_2 particles were used as the friction modifiers to improve the friction and wear performance of PTFE-PPS composites. The friction and wear characteristics of PTFE/PPS-nano-ZrO_2 composites were investigated by a block-on-ring tester under dry friction sliding condition. The worn surfaces, counterpart transfer films and wear debris were studied by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the increase of nanoZrO_2 content could effectively reduce the coefficient of friction and enhance the anti-wear ability of PTFEPPS composites. Especially, the best tribological properties of the composites were obtained when the particle content of nano-ZrO_2 was 10 vol%, the anti-wear performance of composite is 195 times better than that of the unfilled PTFE-PPS composite. Under different conditions, the coefficient of friction of PTFE/PPS-nano-ZrO_2 composites was more affected by the applied load while the wear rate was more affected by the sliding velocity.  相似文献   

7.
为了研究水润滑条件下试验载荷和速度对纳米填料(Nano-SiC)改性超高分子量聚乙烯(UHMWPE)/橡胶复合材料摩擦学性能的影响,通过高温混炼、热压成型制备Nano-SiC辅以聚四氟乙烯(PTFE)填充改性UHMWPE/橡胶复合材料。采用MRH-3型环-块摩擦实验机探究四种不同载荷条件下改性复合材料的摩擦磨损性能,采用光学显微镜(OM)、扫描电子显微镜(SEM)和非接触光学三维轮廓仪对试样微观磨损表面形貌分析,从微观层面探究改性复合材料的摩擦机理。试验结果表明:在定载变速条件下,速度由0.02m/s升到3.59m/s时,改性复合材料的动摩擦系数波动幅度与静摩擦系数均呈现大幅下降趋势,粘-滑现象(Stick-Slip Phenomenon)减弱,摩擦系数波动归于平稳;试验载荷和纳米粒子含量的变化与试样摩擦磨损程度呈负相关,在水润滑条件下,随着纳米粒子含量增加,摩擦系数与磨损率均出现明显降低,填充比例为5%的复合材料摩擦学性能最佳,摩擦系数整体较UHMWPE/橡胶材料降低35%,磨损率降低46.6%,磨损表面形貌也随之发生改变;随着载荷的增加,复合材料的磨损率从1.25×10-6mm3/(Nm)降至0.4×10-6mm3/(Nm)。Nano-SiC的含量与工况载荷压力对摩擦磨损均存在一定影响,即填充适量Nano-SiC的UHMWPE/橡胶复合材料与一定工况压力下的对偶钢环组成的摩擦配副能改善摩擦环境,减轻粘-滑现象,有利于减小材料的磨损。  相似文献   

8.
使用微米氧化铝(Al2O3)为增强剂,以尼龙1010为基体,进行氧化铝/尼龙复合材料在煤泥润滑条件下的滚滑动摩擦磨损实验.通过实验发现,水能降低氧化铝/尼龙复合材料的摩擦系数,但增大了磨损量.煤泥润滑时尼龙1010材料的摩擦系数为0.096;氧化铝/尼龙复合材料的平均摩擦系数为0.089,只有纯尼龙的92.7%.尼龙磨损量是3.32mm3;Al2O3/尼龙复合材料的磨损量平均为15.73mm3;Al2O3/尼龙复合材料的平均磨损量平均是尼龙的4.74倍.  相似文献   

9.
GF增强尼龙1010复合材料的磨擦学性能研究   总被引:12,自引:2,他引:12  
制备了玻璃纤维(GF)增强尼龙1010复合材料,在环一块磨损试验机上研究了复合材料的摩擦学性能。结果表明:GF含量对复合材料的摩擦学性能有显著影响,GF质量分数为35%时增强效果较好;随着滑速的增加,GF增强尼龙1010复合材料的摩擦系数和磨损量持续上升。干摩擦下的复合材料磨损以疲劳断裂和粘着为主,且纤维出现磨损、断裂及从基体中剥落的现象。在油润滑下材料向对偶产生轻微的转移,与干摩擦相比复合材料的摩擦系数和磨损量大为降低;水润滑下的尼龙以化学腐蚀磨损和磨粒磨损为主,此时复合材料摩擦系数也有较大程度的降低,但磨损量较干摩擦增大。  相似文献   

10.
碳纳米管/铝基复合材料的制备及摩擦性能研究   总被引:9,自引:1,他引:9  
采用无压渗透法制备了碳纳米管增强铝基复合材料,并对其摩擦性能进行了研究。利用扫描电镜(SEM)观察了复合材料断面的形貌,通过复合材料硬度测量和摩擦磨损实验,研究了不同碳纳米管体积分数对复合材料的硬度及摩擦磨损性能的影响。实验结果表明,碳纳米管均匀地分散于复合材料中,且与铝基体结合良好;碳纳米管的加入增大了复合材料的硬度,且其摩擦系数和磨损率随着碳纳米管体积分数的增大而减小。由于碳纳米管本身具有自润滑和增强作用,碳纳米管的加入极大地改善了铝合金材料的摩擦性能。  相似文献   

11.
Aluminum-matrix boron carbide (B_4C_p/Al) is a kind of neutron absorbing material widely used in nuclear spent fuel storage.In order to improve the tensile property of B_4C_p/Al composites,a new type of nano-Al_2O_3 particle (Al_2O_(3np)) reinforced B_4C_p/Al + Al_2O_(3np) composites were prepared by powder metallurgy method.The Monte Carlo particle transport program (MCNP) was used to determine the influence of Al_2O_(3np )on the thermal neutron absorptivity of composites.The universal material testing machine and scanning electron microscope (SEM) were used to study the mechanical properties,microstructure and fracture morphology of B_4C_p/Al composites.The results indicated that the neutron absorption properties of B_4C_p/Al composites were not affected by the addition of nano-Al_2O_3 particles in the range of 1 wt%-15 wt%.The addition of Al_2O_(3np) can obviously reduce the grain size of B_4C_p/Al matrix metals thus improve the tensile strength of the composites.The addition threshold of Al_2O_(3np) is about 2.5 wt%.Both B_4C_p and Al_2O_(3np) change the fracture characteristics of the composites from toughness to brittleness,and the latter is more important.  相似文献   

12.
SiC/Cu composites were prepared by hot pressing. The high temperature tribological properties of the composites were investigated. XRD, SEM techniques were carried out to characterize the samples. It is found that the friction coefficient of SiC/Cu composites increases with the increasing SiC content. The SiC reinforcement particles are worn down other than removed by pulling out during the wear test. Oxidation of Cu debris leads to the smooth contacting surface. Ring crack is formed under the cyclic wear test. The crack propagates through the damaged matrix and along the brittle interface between SiC particles and Cu matrix.  相似文献   

13.
Carbon fibre reinforced carbon and silicon carbide dual matrix composites(C/C-SiC) were fabricated by the warm compacted-in situ reaction.The microstructure,mechanical properties,tribological properties,and wear mechanism of C/C-SiC composites at different brake speeds were investigated.The results indicate that the composites are composed of 58wt%C,37wt%SiC,and 5wt%Si.The density and open porosity are 2.0 g.cm~(-3) and 10%,respectively.The C/C-SiC brake composites exhibit good mechanical properties.The ...  相似文献   

14.
指尖密封用炭-炭复合材料摩擦磨损性能   总被引:2,自引:0,他引:2  
为确定指尖密封用炭-炭(炭纤维增强炭基体)复合材料的摩擦学性能,针对指尖密封的轻载使用条件,应用UMT-2摩擦磨损测试仪进行炭-炭复合材料摩擦磨损性能试验,测量摩擦系数与磨损率,并采用扫描电子显微镜(SEM)分析材料的摩擦磨损机理.结果表明,无纬布层垂直于摩擦平面时,材料的摩擦系数和磨损率较低.载荷增加,较高密度材料的磨损率增加缓慢,摩擦系数减小.与载荷相比,材料磨损率受频率的影响较小,且随频率升高摩擦磨损性能越好.磨损表面的SEM分析表明:低频、低载条件下材料发生磨粒磨损;频率的提高加快磨屑膜的成形,自润滑能力增强;载荷的增加虽使磨屑快速被挤压形成磨屑膜,但磨屑膜被不断挤出剥落,纤维裸露断裂产生严重磨损,这一点在材料密度较低时表现更为显著.选用较高密度的材料以及布置无纬布层垂直于摩擦平面可以有效缓解密封材料的磨损.  相似文献   

15.
用MA技术制备了C体积分数为10%的Cu-C固溶体粉体,用溶胶-凝胶(sol-gel)烧结技术制备了平均尺寸为12 nm的γ-Al2O3颗粒和用SPS方法制备了纳米Al2O3颗粒增强Cu-C固溶体基复合材料。采用X射线衍射仪对MA粉体、干凝胶和煅烧粉体进行了物相分析;通过JSM-5500LV型扫描电镜对磨损表面形貌进行观察分析并分析其磨损机制;使用MG-2000型高温摩擦磨损试验机对制备的复合材料进行了干摩擦实验并测定其磨损量。结果表明:纳米氧化铝颗粒体积分数及磨损载荷对复合材料摩擦磨损特性有显著影响,纳米氧化铝的体积分数从0%增加到2%,Cu基复合材料的磨损量从6.2 mg降到2.1 mg。  相似文献   

16.
PTFE和MoS_2填充尼龙复合材料摩擦行为研究   总被引:1,自引:0,他引:1  
以注塑成型法制备了聚四氟乙烯(PTFE)和MoS2填充PA1010复合材料,采用M-2000磨损试验机考察了复合材料与45钢对摩时的摩擦磨损性能,并利用扫描电子显微镜(SEM)分析了PA复合材料磨损表面及其偶件表面转移膜形貌。研究结果表明:PTFE填充PA1010可显著改善尼龙复合材料的摩擦磨损性能。PTFE质量分数为25%时,复合材料的摩擦学综合性能最佳。PTFE和MoS2共同填充PA1010时,复合材料的摩擦因数和磨损率随着PTFE含量的减少、MoS2含量的增加,整体呈现增大趋势,其中PA+20%PTFE+5%MoS2复合材料的减摩抗磨性能较好。在正常工作条件下(0.21-0.42 m/s,100-300 N),PA+25%PTFE复合材料的抗磨性优于相同条件下PA+20%PTFE+5%MoS2复合材料,但PA+20%PTFE+5%MoS2复合材料具有更宽的速度适用范围。PA复合材料的摩擦磨损性能与其在偶件表面形成的转移膜的特性有重要关系,转移膜的厚度大小、分布均匀状况以及和偶件的结合强度都会对复合材料的减摩抗磨性能产生影响。  相似文献   

17.
To improve tribological property of MC Nylon6,the glass fiber and fly ash reinforced monomer casting nylon composites(GFFAPA)were prepared by anionic polymerization of ε-caprolactam.The friction and wear behaviors of composites under dry condition,water lubrication and oil lubrication were investigated through a ring-black wear tester.Worn surfaces were analyzed using a scanning electron microscope.The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing.Compared to MC nylon,the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites(GFPA)with GF30% respectively decrease by 33.1% and 65.3%,of fly ash reinforced nylon composites(FAPA)with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%.The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear.The worn surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites.Compared with dry friction,the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions.The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.  相似文献   

18.
Fly ash/Al-Mg composites are fabricated by powder metallurgical method. The morphology and structure of fly ash/A l-Mg composites are characterized by scanning electron microscope (SEM) and X-ray diffraction, respectively. The influences of different fly ash content on the friction and wear behavior of the composites are investigated at a constant sliding velocity of 400 r/min and the worn mechanism of composites is discussed. The results indicate that the friction coefficient is steadily lower than that of Al alloy matrix at the lower fly ash content and loads. For the fly ash/Al-Mg composites, the wear mechanism is characterized as abrasive wear and adhesive wear under small normal load and at low fly ash content, and it is characterized as delamination wear and abrasive wear transferred onto the counterpart under high normal load and at high fly ash content.  相似文献   

19.
In order to improve wear resistance and decrease the cost, carbon and carbon nanotubes reinforced copper matrix composites were fabricated by the power metallurgy method. The effects of carbon (carbon and carbon nanotubes) volume fraction and applied load on the friction coefficient and wear rate under dry sliding of the composites were investigated at room temperature. By scanning electron microscopy (SEM), the worn surfaces and debris were observed, and wear mechanism was also analyzed and discussed. The experimental wear process consists of the run-in, steady wear and severe wear process with the increasing of sliding distance. Both the friction coefficient and wear rate of the composites first decrease and then increase with the increasing of carbon volume fraction. The minimum friction coefficient and wear rate are obtained when carbon is 4.0vol%. The wear mechanisms of the composites change from the adhesive wear and delamination wear to abrasive wear with the increasing of carbon volume fraction. Funded by the National Natural Science Foundation of China (50873047) and the Natural Science Foundation of Gansu Province (3ZS061-A25-039)  相似文献   

20.
The objective of the present work was to determine the influence of the neutral salt spray corrosion on the wear resistance of HVOF sprayed NiCr-Cr_3C_2 coating with intermediate layer. Ni-Zn-Al_2O_3 coatings as interlayers were prepared by low pressure cold spray(LPCS) between NiCr-Cr_3C_2 cermet coatings to form a sandwich structure to enhance the corrosion resistance properties. The tribological properties were examined using the UMT-3 fricition and wear tester by line-contact reciprocating sliding under dry and salt spray one week corrosion. The morphology, element distribution, and phase compositions of the coating and worn sufaces were analyzed by using scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction respectively. The corrosion behavior of the coating was studied by the open-circuit potential, the electrochemical impedance spectroscopy, potentiodynamic polarization, and salt spray corrosion methods. It is found that the sandwich structured coating has better corrosion resistance than the single layer coating. The results show that under dry wear conditions, the wear mechanism is abrasive and adhesive wear, whereas under salt spray corrosion conditions it becomes corrosion wear. The friction coefficient of the sandwich structured coating after salt spray corrosion is slightly lower than the dry friction coefficient, but the weight of the wear loss is lower than that under dry condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号