首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniform macroporous particles carrying hydroxyl groups have been obtained in the size range 3–11.5 µm by seeded polymerization. For this purpose, uniform polystyrene particles in the size range 1.9–6.2 µm were used as seeds. The seed particles were successively swollen by dibutyl phthalate (DBP) and a monomer mixture comprising styrene, 2‐hydroxyethylmethacrylate (HEMA) and a crosslinker. Two different crosslinkers, divinylbenzene (DVB) and ethylene glycol dimethacrylate (EGDMA), were tested. Size distribution properties together with bulk and surface structures of the particles have been characterized by both scanning and transmission electron microscopy. While EGDMA provides uniform particles with a non‐porous surface, DVB produces uniform particles having a highly porous surface and interior. The comparison of FTIR and FTIR‐DRS spectra shows that the HEMA concentration is higher on the particle surface than within the particle interior. Seed latex size and monomer/seed latex ratios are identified as the most important variables affecting the final particles. Different seed latexes have been tried; the result is that highly macroporous particles with a sponge‐like pore structure both on the surface and in the particle interior have been obtained by use of the seed latex with the largest particles and the lowest molecular weight. An increase in the HEMA feed concentration leads to final particles with a non‐porous surface and a crater‐like porosity in the particle interior. The average pore size significantly decreases with increasing DBP/seed latex and monomer/seed latex ratios. © 2001 Society of Chemical Industry  相似文献   

2.
The electron microscopic observation of uniform and macroporous poly(styrene‐co‐divinylbenzene) particles prepared by a two‐step seeded polymerization method was performed. In the synthesis of uniform macroporous particles, the uniform polystyrene latices produced by a dispersion polymerization method with two different sizes and average molecular weights were utilized as the seed particles. The seed particles were first swollen with dibutylphthalate and then with a monomer phase, including styrene and divinylbenzene. The macroporous structure of the final particles was achieved by using a porogen mixture consisting of dibutylphthalate and linear polystyrene. The linear polystyrene part of the porogen solution was directly obtained from the seed latex. The macroporous particles with different diameters and porosities were produced by changing the divinylbenzene concentration between 25 and 100% in the repolymerization step. The effect of divinylbenzene concentration on the size and the surface morphology of the final particles were investigated by scanning electron microscopy. The internal structure of the final particles was analyzed by transmission electron microscopy. The results indicated that the average size of the final particles increased with the increasing divinylbenzene concentration. The increase in the DVB concentration also led to an increase in the average pore size. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2291–2302, 1999  相似文献   

3.
The adsorbability of bovine serum albumin (BSA) onto poly(styrene‐co‐itaconic acid) (PS–IA), poly(styrene‐co‐hydroxyethyl methacrylate) (PS–HEMA), poly(styrene‐co‐acrylic acid) (PS–AA), and poly(styrene‐co‐methacrylic acid) (PS–MAA) latices were investigated with a quartz crystal microbalance. The amount adsorbed onto the functionalized latices, except for PS–MAA, was greater than that adsorbed onto polystyrene (PS) latex. To explain this result, two kinds of interaction forces were considered, hydrogen bonding and hydrophobic interactions, whereas electrostatic interaction was assumed to be small. When comparing the two extremes of hydrophobic interaction and hydrogen bonding, the latter was stronger. The corrected adsorption mass suggested that the BSA molecules were adsorbed onto the PS–MAA latex in a side‐on mode. However, in the case of the PS, PS–IA, PS–HEMA, and PS–AA latices, the BSA molecules were probably adsorbed in multiple layers. The presence of the BSA in the latex particle surface was verified by attenuated total reflectance/Fourier transform infrared spectroscopy and atomic force microscopy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42055.  相似文献   

4.
Hydrophobically modified poly(acrylic acid) hydrogels were synthesized using acrylic acid (AA), methyl methacrylate (MMA), ethyl methacrylate (EMA) and butyl methacrylate (BMA) as copolymer monomers. These hydrogels were carried out for removal cationic dyes from aqueous solution. It was found that the adsorption of cationic dye depended on the length of the side chain, hydrophobic monomer (MMA, EMA and BMA) content and pH of the solution. Increasing the hydrophobic monomer content led to an increase in the adsorption of cationic dyes on the hydrogels. The adsorption kinetics and isotherms of hydrogels were in good agreement with pseudo–second-order equation and the Langmuir equation, respectively. The cationic dyes adsorption of hydrogels involved a mechanism that combined swelling and electrostatic and hydrophobic interaction.  相似文献   

5.
In a low emulsifier system, the MMA‐BA‐MAA copolymer emulsions were prepared as seed latices and the seeded emulsion polymerization of MMA‐MAA‐DVB was consequently carried out to prepare carboxylated core particles. The hydrophobic shell was then synthesized onto the core using styrene, acrylonitrile, and divinylbenzene as comonomers. The hollow latex particles were obtained by alkalization treatment of the core‐shell latex particles. The effects of the feeding rate of monomer mixture, contents of emulsifier SDBS and crosslinking agent DVB, and ratio of the monomers during the core stage and shell stage on the morphology and volume expansion of the latex particles were investigated. The results show that the monodispersed hollow latex particles with large size can be obtained when the feeding rate is 0.1 g/min, SDBS content is 0.15 and 0.2 wt % during the core stage and shell stage, respectively, DVB contents are 1% during the preparation of shell copolymers, and the monomer ratio of the core particle to shell layer is 1 : 8. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1505–1510, 2005  相似文献   

6.
Seeded emulsion polymerization of methyl methacrylate (MMA) or styrene (ST) was carried in the presence of different vinyl‐containing polysiloxane latices (SV‐*) and the core‐shell particles with poly(methyl methacrylate) (PMMA) or polystyrene (PST), as the shells were obtained under different polymerization conditions. Besides the compatibility of the vinyl monomer and its polymer with polysiloxane and the reaction between vinyl monomer with vinyl group of polysiloxane, the content of vinyl group of seed polysiloxane has influence on the morphology and component of the resulted composite particles. The mechanism for the formation of core‐shell structure is discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2752–2758, 2001  相似文献   

7.
Monodisperse seeded latex particles with a core–shell morphology were prepared by copolymerizing, via dropwise addition, styrene (St)–methyl methacrylate (MMA)–acrylic acid (AA) or St–MMA–methacrylic acid (MAA) onto monodisperse seed latex particles of P(St–MMA). The seeded particles thus prepared were subjected to an alkali/acid treatment in order to generate pores in the particles. For the same carboxylic acid content, the volume expansion of the particles due to pore generation was higher in the particles containing AA than in those containing MAA. The size of the pores increased with increasing AA content. However, a maximum particle volume expansion of about 50% was observed for the particles containing 8 mol % AA in the monomer mixture employed in the second stage, and an explanation for this optimum is suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1455–1460, 1999  相似文献   

8.
The polymeric microspheres were synthesized by the precipitation copolymerization of glycidyl methacrylate (GMA) with methacrylic acid(MAA) or 2‐hydoxyethyl methacrylate (2‐HEMA) containing styrene (ST) in SC‐CO2. Scanning electron microscopy (SEM) showed that the products were spherical microparticles, with the addition of MAA and/or 2‐HEMA as the monomer, with diameter of 0.2–2 μm. The effects of copolymerization pressure, temperature, and ratios of GMA/MAA, ST, and/or GMA/2‐HEMA, on the particle size and morphology were investigated in detail. A new experiment setup is proposed for the large amount of production, based on the rule of lower monomer concentration, more stable system, and better use of the present polymerization apparatus. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2425–2431, 2007  相似文献   

9.
In the present study, an in situ approach to pH and temperature responsive membranes is developed. The membrane matrix is formed through bulk polymerization and crosslinking of liquid monomer 2-hydroxyethyl methacrylate (HEMA) while the membrane pores are formed by the templating of inorganic particles. The functional monomers methacrylic acid (MAA) and N-isopropylacrylamide (NIPAAm) are incorporated into membrane casting solution in order to confer membranes with pH and temperature responsive properties. The poly(HEMA/MAA) membranes exhibit a reversible pH-dependent water flux, while the poly(HEMA/NIPAAm) membranes exhibit a reversible temperature-dependent water flux. The flux of the poly(HEMA/MAA) membrane increased by 70% when pH was decreased from 10.0 to 2.0, while the flux poly(HEMA/NIPAAm) membrane increased by 150% when temperature was increased from 20 to 45 °C. The protein adsorption and antifouling performance of the poly(HEMA/MAA) and poly(HEMA/NIPAAm) membranes also exhibit pH and temperature responsive properties.  相似文献   

10.
Photomodifications of polymer surface are investigated from the viewpoint of dyeing of the irradiated polymer surface. For this purpose, several kinds of acryloyl acetophenone oxime (AAPO) copolymers are prepared. As the other monomer components, methyl methacrylate (MMA), styrene (St), 2,3-epoxypropyl methacrylate (EPMA), 2-hydroxyethyl methacrylate (HEMA), N-vinyl pyrroridone (NVP), and n-butyl methacrylate (BMA) are used. In the photolysis of acyloxyimino (AOI) groups in AAPO copolymers, alkylimino groups can be introduced very effectively, which can be easily transformed to ammonium groups by hydrolysis in an aqueous solution of HCI. The surface of AAPO copolymers becomes dyeable with an acid dye (Congo Red) by the irradiation followed by HCI treatment and the degree of dyeing of the surface depends on not only the contents of ammonium groups but also the physical properties of the other monomer components. Although the hydrophilic or polar monomer such as NVP, HEMA, and MMA are cooperative for dyeing, the hydrophobic monomer such as St decreases the function of ammonium groups for dyeing. Although the undecomposed AAPO components in AAPO–MMA do not affect the degree of dyeing up to 24.5 mol % of AAPO contents in AAPO–MMA copolymers, they show the inhibition effect for dyeing of AAPO(38.8)–MMA at an earlier stage in irradiation. Aromatic moieties in AAPO are thought to inhibit the dyeing.  相似文献   

11.
A modified emulsifier‐free emulsion polymerization of butyl methacrylate (BMA) with ionic or/and nonionic comonomers was successfully used to prepare nanosized poly(butyl methacrylate) (PBMA) latices with high polymer contents. After seeding particles were generated in an initial emulsion system, consisting of a portion of BMA, water, ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2‐hydroxyethyl methacrylate (HEMA)] and potassium persulfate, most of the BMA monomer or the mixture of BMA and HEMA was added dropwise to the polymerizing emulsion over a period of 6–12 h. Stable latices with high PBMA contents up to 27% were obtained. It was found that the latex particle sizes (2Rh) were largely reduced (34 nm) by the continuous addition of monomer(s) compared to those (107 nm) obtained by the batch polymerization method. The effect of comonomer concentration on the particle size, the number of PBMA particles/mL of latex (Nd), and the molar mass (Mw) of copolymer during the polymerization were discussed. The surface compositions of latex particles were analyzed by X‐ray photoelectron spectroscopy, indicating that the surface of latex particles was significantly enriched in NaSS or/and HEMA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3080–3087, 2004  相似文献   

12.
Heterogeneous latexes were prepared by a semicontinuous seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amounts of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. Phase separation towards the thermodynamic equilibrium morphology was accelerated either by ageing the composite latex at 80 °C or by adding a chain‐transfer agent during polymerization. The morphologies of the latex particles were examined by transmission electron microscopy (TEM). The morphology distributions of latex particles were described by a statistical method. It was found that the latex particles displayed different equilibrium morphologies depending on the composition of the second‐stage copolymers. This series of equilibrium morphologies of [poly(butyl acrylate)/poly(styrene‐co‐methyl methacrylate)] (PBA/P(St‐co‐MMA)) system provides experimental verification for quantitative simulation. Under limiting conditions, the equilibrium morphologies of PBA/P(St‐co‐MMA) were predicted according to the minimum surface free energy change principle. The particle morphology observed by TEM was in good agreement with the predictions of the thermodynamic model. Therefore, the morphology theory for homopolymer/homopolymer composite systems was extended to homopolymer/copolymer systems. © 2002 Society of Chemical Industry  相似文献   

13.
Attapulgite needle encapsulated with double‐layer polymer shell (ATP@DP) were prepared by the soapless seeded emulsion polymerization of the second monomer styrene in the dispersion of the attapulgite needle encapsulated with poly(methyl methacrylate) (ATP@PMMA), which was also conducted by the soapless seeded emulsion polymerization of the first monomer methyl methacrylate with the cetyltrimethylammonium bromide (CTAB) modified attapulgite needle (org‐ATP) as seeds. The different morphologies of ATP, ATP@PMMA particles, and ATP@DP particles were characterized by transmission electron microscopy, and the encapsulation mechanism was also discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Lysozyme adsorption onto dye‐attached nonporous monosize poly(2‐hydroxyethyl‐methacrylate‐methylmethacrylate) [poly(HEMA‐MMA)] microspheres was investigated. Poly(HEMA‐MMA) microspheres were prepared by dispersion polymerization. The monochloro‐triazine dye, Cibacron Blue F3GA, was immobilized covalently as dye–ligand. These dye‐affinity microspheres were used in the lysozyme adsorption–desorption studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached and metal‐chelated microspheres were studied in a batch reactor. Effect of Cu(II) chelation on lysozyme adsorption was also studied. The nonspecific adsorption of lysozyme on the poly(HEMA‐MMA) microspheres was 3.6 mg/g. Cibacron Blue F3GA attachment significantly increased the lysozyme adsorption up to 247.8 mg/g. Lysozyme adsorption capacity of the Cu(II) incorporated microspheres (318.9 mg/g) was greater than that of the Cibacron Blue F3GA‐attached microspheres. Significant amount of the adsorbed lysozyme (up to 97%) was desorbed in 1 h in the desorption medium containing 1.0M NaSCN at pH 8.0 and 25 mM EDTA at pH 4.9. In order to examine the effects of separation conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We conclude that dye‐ and metal‐chelate affinity chromatography with poly(HEMA‐MMA) microspheres can be applied for lysozyme separation without causing any significant changes and denaturation. Repeated adsorption/desorption processes showed that these novel dye‐attached monosize microspheres are suitable for lysozyme adsorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 115–124, 2000  相似文献   

15.
Conductive polymer particles, polyaniline (PANI)‐coated poly(methyl methacrylate–butyl acrylate–acrylic acid) [P(MMA–BA–AA)] nanoparticles, were prepared. The P(MMA–BA–AA)/PANI core–shell complex particles were synthesized with a two‐step miniemulsion polymerization method with P(MMA–BA–AA) as the core and PANI as the shell. The first step was to prepare the P(MMA–BA–AA) latex particles as the core via miniemulsion polymerization and then to prepare the P(MMA–BA–AA)/PANI core–shell particles. The aniline monomer was added to the mixture of water and core nanoparticles. The aniline monomer could be attracted near the outer surface of the core particles. The polymerization of aniline was started under the action of ammonium persulfate (APS). The final product was the desired core–shell nanoparticles. The morphology of the P(MMA–BA–AA) and P(MMA–BA–AA)/PANI particles was characterized with transmission electron microscopy. The core–shell structure of the P(MMA–BA–AA)/PANI composites was further determined by Fourier transform spectroscopy and ultraviolet–visible measurements. The conductive flakes made from the core–shell latexes were prepared, and the electrical conductivities of the flakes were studied. The highest conductivity of the P(MMA–BA–AA)/PANI pellets was 2.05 S/cm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Narrow‐disperse and monodisperse cross‐linked core–shell polymer particles containing different functional groups, such as esters, hydroxyls, chloromethyls, carboxylic acids, amides, cyanos, and glycidyls, in the shell layers in the micrometer size range were prepared by a two‐stage precipitation polymerization in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80% DVB, was precipitation polymerized in acetonitrile without any stabilizer as the first‐stage polymerization and was used as the core. Several functional monomers, including methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2‐hydroxyethyl methacrylate, glycidyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, t‐butyl acrylate, i‐octyl acrylate, acrylic acid, acrylamide, acrylonitrile, styrene, and p‐chloromethyl styrene, were incorporated into the shells during the second‐stage polymerization. The resulting core–shell polymer particles were characterized with scanning electron microscopy and Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1776–1784, 2006  相似文献   

17.
With monodispersed poly(methyl methacrylate/n‐butyl acrylate/acrylic acid) [P(MMA/BA/AA)] seeded latex with a particle size of 485 nm and a solid content of 50 wt % as a medium, a series of stable P(MMA/BA/AA)/poly(styrene/acrylic acid) composite latexes with a high solid content (70 wt %) and low viscosities (500–1000 mPa · s when the shear rate was 21 s?1) was prepared in situ via simple two‐step semicontinuous monomer adding technology. The coagulum ratio of polymerization was about 0.05 wt %. The particle size distribution of such latexes was bimodal, in which the large particle was about 589 nm and the small one was about 80 nm. The latexes combined good mechanical properties with good film‐forming properties. Differential scanning calorimetry showed that the corresponding latex film had a two‐phase structure. The morphology of the latex film was characterized with atomic force microscopy and scanning electron microscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1815–1825, 2007  相似文献   

18.
由种子乳液聚合法制备了聚苯乙烯-聚甲基丙烯酸甲酯核-壳粒子。以过硫酸钾(KPS)为引发剂,辛基酚聚氧乙烯醚(OP-10)为乳化剂,合成了聚苯乙烯(PS)种子核;连续滴加甲基丙烯酸甲酯(MMA),在核表面富集MMA,制备了粒径范围在0.16~0.67μm的核-壳粒子;当单体苯乙烯与甲基丙烯酸甲酯(St/MMA)的比为30∶70(质量比)时,所得粒径在0.18μm,粒径分布为0.012。差示扫描量热(DSC)研究显示,复合粒子的玻璃化转变温度(Tg)为97.2℃,峰形单一,表现出良好的热性能。  相似文献   

19.
Heterogeneous film‐forming latexes were prepared using two‐stage, seeded emulsion polymerization. The polymerization was performed in a calorimetric reactor with a control unit that monitored the reaction rate and controlled the charging rate of the monomers. Three types of styrene seed latexes were prepared at 70°C. The first was an unmodified polystyrene (PS) latex. The second had the molecular weight lowered by the use of carbon tetrachloride (CCl4) as a chain‐transfer agent, added at the start of the polymerization. For the third one, divinylbenzene (DVB) was used as a comonomer. DVB was added under starved conditions near the end of the polymerization to achieve crosslinked particle shells and to introduce double bonds as possible grafting sites. The second polymerization step was performed at 80°C as a batch operation in a 200‐mL calorimeter reactor. The second‐stage polymer was poly(styrene‐co‐butadiene‐co‐methacrylic acid) (S/B/MAA). A fixed S/B ratio was used together with varying small amounts of MAA. Particle morphology and particle‐size distributions were examined after the second stage using TEM after staining with osmium tetroxide. The particle morphology was found to depend on both the seed composition and the amount of MAA used in the second stage. Molecular weight and crosslinking of the DVB‐containing seed influenced the internal particle viscosity, which gave differences in the polymerization rate and the particle morphology. Crosslinking of the second‐stage polymer decreased the monomer concentration in the particles, which could be detected as a change in the slope the pressure/conversion curve. This phenomenon was used to indicate the critical conversion for crosslinking of the second‐stage polymer. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 297–311, 2000  相似文献   

20.
Monodisperse polymer particles were prepared via one‐step seeded polymerization using polystyrene, poly(methyl methacrylate), or styrene/methyl methacrylate copolymer [poly(ST‐co‐MMA)] as seed particles and 1,6‐hexanedioldiacrylate or divinylbenzene as crosslinking monomer. For the study, the effects of the combination of seed polymer and crosslinking monomer, the ratio of the absorbed monomer to the seed polymer particles (swelling ratio: S/R), and the seeded polymerization rate on the variation of surface morphology and mechanical properties of polymer particles, such as recovery rate, K‐values, breaking strength, and breaking displacement were investigated by using microcompression test. It was observed that the surface morphology could be controlled by changing polymerization rate or combination of seed polymer and crosslinking monomer, and it had a great influence on mechanical properties, especially the breaking strength. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2350–2360, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号