首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental measurement of gas holdup was carried out in a medium-size gas-liquid-liquid bubble column with a multiple nozzle sparger plate using air, water and organic liquids. It was found that the fractional holdup depends on gas velocity, liquid properties, phase inversion in the liquid mixture as well as spreading coefficient of the organic liquid. In the presence of a liquid with a negative spreading coefficient the holdup is a minimum at the phase inversion point. but the reverse is true for a liquid with a positive coefficient of spreading. Observed bubble characteristics have been discussed. Correlations for gas holdup have been developed for different ranges of liquid composition.  相似文献   

2.
Gas holdup and surface‐liquid mass transfer rate in a bubble column have been experimentally investigated. De‐mineralized water, 0.5 and 1.0% aqueous solutions of carboxy methyl cellulose (CMC), and 60% aqueous propylene glycol have been used as the test liquids. Effects of column diameter, liquid height to column diameter ratio, superficial gas velocity and liquid phase viscosity on gas holdup and mass transfer rate are studied. Generalized correlations for the average gas holdup and wall to liquid heat and mass transfer coefficients are proposed. These are valid for both Newtonian and pseudoplastic non‐Newtonian fluids.  相似文献   

3.
The effects of gas‐agitation and packing on hydrodynamics and mass transfer were investigated through experiments with air‐kerosene (benzoic acid)‐water system and corrugated‐packing of calendering plate with hole. The holdup of gas, holdup of dispersed liquid phase and mass transfer coefficient increase and the flooding velocity decrease with the increase in superficial gas velocity. Over‐agitation of gas causes over‐dispersion and emulsification of dispersed liquid phase, reduction of mass transfer performance and even flooding. The mass transfer performance of a packed column is far better than that of an unpacked column.  相似文献   

4.
Micro‐bubbles were dispersed in the bubble column with draft tube, and the length and diameter of draft tube were changed. The flow characteristics in air–water system were measured. Ozone gas and methylene‐blue aqueous solution were used, and the decomposition performance was examined. With increasing draft tube length, both the gas holdup and liquid velocity in the annular section increased. When the diameter ratio of draft tube to column was about 0.5, both the gas holdup and liquid circulation flow rate had maxima. For the decomposition by using ozone, the installation of draft tube enhanced the mass transfer and decomposition performance.  相似文献   

5.
The stratified configuration is one of the basic and most important distributions during two phase flow through horizontal pipes. A number of studies have been carried out to understand gas‐liquid stratified flows. However, not much is known regarding the simultaneous flow of two immiscible liquids. There is no guarantee that the information available for gas‐liquid cases can be extended to liquid‐liquid flows. Therefore, the present work attempts a detailed investigation of liquid‐liquid stratified flow through horizontal conduits. Gas‐liquid flow exhibits either smooth or wavy stratified orientations, while liquid‐liquid flow exhibits other distinct stratified patterns like three layer flow, oil dispersed in water, and water flow, etc. Due to this, regime maps and transition equations available for predicting the regimes in gas‐liquid flow cannot be extended for liquid‐liquid cases by merely substituting phase physical properties in the equations. Further efforts have been made to estimate the in‐situ liquid holdup from experiments and theory. The analysis considers the pronounced effect of surface tension, and attempts to modify the Taitel‐Dukler model to account for the curved interface observed in these cases. The curved interface model of Brauner has been validated with experimental data from the present work and those reported in literature. It gives a better prediction of liquid holdup in oil‐water flows and reduces to the Taitel‐Dukler model for air‐water systems.  相似文献   

6.
The hydrodynamic behavior of a single‐stage tapered bubble column using an air‐water two‐phase system has been studied. The experimental results indicate that the holdup increases with increasing superficial gas velocity and bubble slip velocity, while it remains constant with increasing superficial liquid velocity. The gas flow rate has a subtle effect on pressure drop owing to the dynamic pressure recovery stemming from the increase in flow area in the axial direction. The results further suggest that the tapered bubble column shows higher holdup with lower energy dissipation than the conventional bubble columns under similar hydrodynamic conditions. The experimental values of the holdup are in excellent agreement with the well‐known Akita and Yoshida correlation available in the existing literature. Also, the performance of the tapered system has been shown to be much better than that of conventional columns under similar conditions in water/alkaline scrubbing of fly ash and SO2 either alone or in combination.  相似文献   

7.
Including internals in bubble columns is known to enhance the gas holdup. In this paper, a method to achieve this objective substantially has been proposed via the use of vibrating helical spring internals. Experimental observations on effect of vibrating internals such as vibrating helical springs on gas holdup in bubble columns are presented. Effects of superficial gas velocity, H/D ratio (height of the static liquid to column diameter ratio), volume fraction of helical springs, and thickness of the helical spring wires on hydrodynamics parameters are studied. Increase in gas holdup up to 135% is observed by using vibrating helical spring internals in bubble columns compared to bubble columns without internals. This method offers a simple, cost‐effective, and easy way to enhance gas holdup even at high gas fluxes. It has been reported that this enhancement stems from the fact that the vibrating springs breakup the gas into fine bubbles, which effectively reduces their rise velocity and enhances their average residence time in the liquid column.  相似文献   

8.
针对SBS加氢反应器开发与设计,以SEBS-1650己烷溶液为液相,采用差压法和床层塌落法研究了气液鼓泡塔中高黏度溶液的流体力学行为,考察了黏度对低表面张力溶液的气含率、大小气泡气含率、大小气泡上升速度和比表面积等因素的影响。结果表明,随黏度增加,大气泡增多,气含率明显降低,塔内流型处于湍流区;由床层塌落曲线确定鼓泡塔内存在三种类型的气泡:大气泡、小气泡及细小气泡,随黏度增加,小气泡与细小气泡逐渐减少;黏度对大小气泡的上升速度略有影响,比表面积随黏度增加而明显降低。根据实验结果给出了大小气泡气含率与平均气含率的计算公式。  相似文献   

9.
In the present work, water and three phase compositions of Solka-Floc, a cellulose fiber for simulating the biomass in bacteria, yeast, and fungal fermentation were studied in a 1.4 m3 stirred airlift reactor. The fractional dispersed phase holdup and the overall volumetric mass transfer coefficients were measured. The dispersed phase riser gas holdup and overall volumetric mass transfer coefficients both increased with increasing riser superficial dispersed phase velocity (0.02-0.1 ms-1) and agitator speed in the range of 0-5 rs-1. An increase in the Solka-Floc concentration (1-3% w/v) was found to reduce εGR and KLaL. Empirical correlations have been developed for fractional dispersed phase gas holdup and overall volumetric mass transfer coefficients.  相似文献   

10.
Accurate prediction of dispersed phase droplet behavior is crucial to the design and scaling‐up of an extraction column. In this article, the dispersed droplet velocity algorithm and the diameter algorithm in a liquid–liquid two‐phase flow have been developed based on the bubble velocity model in gas–liquid two‐phase flow of Lucas [Measurement Science & Technology. 749, 758(2005)] and Shen [International Journal of Multiphase Flow. 593, 617(2005)]. Hydrodynamic characteristics, including droplet diameter, holdup and droplet velocity, were measured using a self‐made four‐sensor optical fiber probe in a 38 mm‐diameter pulsed sieve‐plate extraction column. Water and kerosene were used as continuous and dispersed phases, respectively. The influences of the pulsed intensity, the continuous and dispersed phase superficial velocities on the hydrodynamic characteristics were investigated. The experimental results show that it is reliable to use a four‐sensor optical probe to measure the hydrodynamic characteristics of a pulsed extraction column. © 2016 American Institute of Chemical Engineers AIChE J, 63: 801–811, 2017  相似文献   

11.
A model based on two‐phase volume‐averaged equations of motion is proposed to examine the gravity dependence of the bubble‐to‐pulse transition in gas‐liquid cocurrent down‐flow through packed beds. As input, the model uses experimental correlations for the frictional pressure drop under both normal gravity conditions and in the limit of vanishing gravity, as well as correlations for the liquid‐gas interfacial area per unit volume of bed in normal gravity. In accordance with experimental observations, the model shows that, for a given liquid flow, the transition to the pulse regime occurs at lower gas‐flow rates as the gravity level or the Bond number is decreased. Predicted transition boundaries agree reasonably well with observations under both reduced and normal gravity. The model also predicts a decrease in frictional pressure drop and an increase in total liquid holdup with decreasing gravity levels. © 2013 American Institute of Chemical Engineers AIChE J 60: 778–793, 2014  相似文献   

12.
Experimental investigations have been carried out to evaluate the two‐phase pressure drop and the holdup for gas‐Newtonian liquid flow through helical coils. 24 helical coils and three different liquids were used for the experiments. Empirical correlations have been developed to predict the two‐phase friction factor and the liquid holdup as functions of various physical and dynamic variables of the system. Statistical analysis of the correlations suggests that they are of acceptable accuracy.  相似文献   

13.
BACKGROUND: Ejectors have excellent mass transfer characteristics with energy efficiency and can be used in place of conventional countercurrent systems, namely, packed bed contactors as well as venturi scrubbers, cyclones and airlift pumps. Although a number of papers have been published in the recent past, none of them provides a theoretical basis for the prediction of gas phase holdup. In this work an attempt has been made to develop a theoretical basis for predicting gas phase holdup based on first principles using Nguyen and Spedding's distribution function (Co) and initial value parameter (B). RESULTS: In the present work, measurements and correlations are reported for the gas holdup and energy dissipation in a liquid‐gas ejector. The holdup data have been correlated using the theoretical models proposed by Nguyen and Spedding, 26 with an estimated initial value parameter B and the distribution function Co. The throat and diffuser loss coefficients were found to be constant up to a gas/liquid flow ratio of 1.6 and then it was found to be a function of area ratio, physical properties and gas holdup. CONCLUSIONS: The present proposed correlations for gas phase holdup and energy dissipation, Emix, should be useful for the efficient design of co‐current ejectors for gas‐liquid contacting, in particular for the removal of CO2 from natural gas, since the viscosity and surface tension ranges covered in the present study are essentially those encountered in amine–carbon dioxide systems. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
The ultrasonic method developed to measure the dispersed phase holdups in dispersion systems is based on the fact that the velocity of ultrasound in the dispersion is different from that in the liquid. The relationships between velocity differences in the term of transmission time differences of ultrasound and gas holdup in a gas-liquid system and solid holdup in a liquid-solid system were derived. The holdups became linearly dependent on the time differences, which is in agreement with the experimental data. Based on those relations, a model for simultaneous measurement of gas and solid holdups in three-phase systems is proposed. The model permits measurement of the dispersed phase holdups by measuring the transmission time of ultrasound transmitted through the dispersions in two frequencies. It allows investigation of local holdups distributions in a bubble column and in a suspended bubble column.  相似文献   

15.
The effects of air‐flow pulsation and water and air flowrates on the hydrodynamics of liquid—gas and three‐phase fluidized beds containing 3‐mm glass beads have been studied in a 90‐mm i.d. column. Under steady‐flow conditions, both types of bed contained a relatively large number of small bubbles. With a pulsing air flow, however, a smaller number of much larger bubbles or slugs were formed. This was attributed to different mechanisms of bubble formation at the distributor. Variations in phase holdup were explained in terms of the effects of the operating parameters on the bubble characteristics.  相似文献   

16.
The hydrodynamic performance of three internal airlift reactor configurations was studied by the Eulerian–Eulerian k–ε model for a two‐phase turbulent flow. Comparative evaluation of different drag and lift force coefficient models in terms of liquid velocity in the riser and downcomer and gas holdup in the riser was highlighted. Drag correlations as a function of Eötvös number performed better results in comparison to the drag expressions related to Reynolds number. However, the drag correlation as a function of both Reynolds and Eötvös numbers fitted well with experimental results for the riser gas holdup and downcomer liquid velocity in configurations I and II. Positive lift coefficients increase the liquid velocity and decrease the riser gas holdup, while opposite results were obtained for negative values. By studying the effects of bubble size and their shape, the smaller bubbles provide a lower liquid velocity and a gas holdup. The effects of bubble‐induced turbulence and other non‐drag closure models such as turbulent dispersion and added mass forces were analysed. The gas velocity and gas holdup distributions, liquid velocity in the riser and downcomer, vectors of velocity magnitude and streamlines for liquid phase, the dynamics of gas holdup distribution and turbulent viscosity at different superficial gas velocities for different reactor configurations were computed. The effects of various geometrical parameters such as the draft tube clearance and the ratio of the riser to the downcomer cross‐sectional area on liquid velocities in the riser and the downcomer, the gas velocity and the gas holdup were explored. © 2011 Canadian Society for Chemical Engineering  相似文献   

17.
Experiments were performed to study the hydrodynamics of a cocurrent three‐phase fluidized bed with liquid as continuous phase. Based on the 209 experimental data (with four liquid systems and five different particles) along with 115 literature data from six different sources on minimum fluidization velocity, a unique correlation for the estimation of minimum fluidization velocity in two‐phase (ug = 0) as well as in three‐phase systems is developed. A data bank consisting of 1420 experimental measurements for the fractional gas phase holdup data with a wide range of variables is used for developing empirical correlations. Separate correlations are developed for two flow regimes observed in this present work. The proposed correlations are more accurate and simpler to use. © 2002 Society of Chemical Industry  相似文献   

18.
In the present work, water and three phase compositions of Solka-Floc, a cellulose fiber for simulating the biomass in bacteria, yeast, and fungal fermentation were studied in a 1.4?m3 stirred airlift reactor. The fractional dispersed phase holdup and the overall volumetric mass transfer coefficients were measured. The dispersed phase riser gas holdup and overall volumetric mass transfer coefficients both increased with increasing riser superficial dispersed phase velocity (0.02–0.1?ms?1) and agitator speed in the range of 0–5?rs?1. An increase in the Solka-Floc concentration (1–3% w/v) was found to reduce ?GR and K L a L . Empirical correlations have been developed for fractional dispersed phase gas holdup and overall volumetric mass transfer coefficients.  相似文献   

19.
Three‐dimensional (3‐D) simulations of an internal airlift loop reactor in a cylindrical reference frame are presented, which are based on a two‐fluid model with a revised k‐? turbulence model for two‐phase bubbly flow. A steady state formulation is used with the purpose of time saving for cases with superficial gas velocity values as high as 0.12 m/s. Special 3‐D treatment of the boundary conditions at the axis is undertaken to allow asymmetric gas‐liquid flow. The simulation results are compared to the experimental data on average gas holdup, average liquid velocity in the riser and the downcomer, and good agreement is observed. The turbulent dispersion in the present two‐fluid model has a strong effect on the gas holdup distribution and wall‐peaking behavior is predicted. The CFD code developed has the potential to be applied as a tool for scaling up loop reactors.  相似文献   

20.
The optical fiber probe has been for the first time applied to investigate the hydrodynamics and gas‐phase distribution at high gas/liquid ratios in a two‐phase flow monolith bed with 0.048 m diameter and 400 cpsi. Local hydrodynamic parameters including gas holdup, bubble frequency, bubble velocity, and bubble length in single channels were measured by 16 inserted single‐point optical fiber probes within the bed under a nozzle as the liquid distributor. The following findings are reported. (1) The optical fiber probe can be used as an efficient and convenient technique for measuring local hydrodynamic parameters inside the channels of a monolith bed; (2) within the range of high gas/liquid ratios under which experiments were conducted, churn flow regime occurred. In this regime, the monolith bed radial distribution of gas holdup, bubble frequency, bubble velocity, and bubble length is nonuniform in nature. © 2013 American Institute of Chemical Engineers AIChE J 60: 740–748, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号