首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the NP-complete Feedback Vertex Set problem, which asks for the smallest set of vertices to remove from a graph to destroy all cycles, is deterministically solvable in O(ckm) time. Here, m denotes the number of graph edges, k denotes the size of the feedback vertex set searched for, and c is a constant. We extend this to an algorithm enumerating all solutions in O(dkm) time for a (larger) constant d. As a further result, we present a fixed-parameter algorithm with runtime O(k2m2) for the NP-complete Edge Bipartization problem, which asks for at most k edges to remove from a graph to make it bipartite.  相似文献   

2.
We study the classical Bandwidth problem from the viewpoint of parametrised algorithms. Given a graph G=(V,E) and a positive integer k, the Bandwidth problem asks whether there exists a bijective function β:{1,…,∣V∣}→V such that for every edge uvE, ∣β−1(u)−β−1(v)∣≤k. It is known that under standard complexity assumptions, no algorithm for Bandwidth with running time of the form f(k)nO(1) exists, even when the input is restricted to trees. We initiate the search for classes of graphs where such algorithms do exist. We present an algorithm with running time n⋅2O(klogk) for Bandwidth on AT-free graphs, a well-studied graph class that contains interval, permutation, and cocomparability graphs. Our result is the first non-trivial algorithm that shows fixed-parameter tractability of Bandwidth on a graph class on which the problem remains NP-complete.  相似文献   

3.
We present semi-streaming algorithms for basic graph problems that have optimal per-edge processing times and therefore surpass all previous semi-streaming algorithms for these tasks. The semi-streaming model, which is appropriate when dealing with massive graphs, forbids random access to the input and restricts the memory to bits.Particularly, the formerly best per-edge processing times for finding the connected components and a bipartition are O(α(n)), for determining k-vertex and k-edge connectivity O(k2n) and O(n⋅logn) respectively for any constant k and for computing a minimum spanning forest O(logn). All these time bounds we reduce to O(1).Every presented algorithm determines a solution asymptotically as fast as the best corresponding algorithm up to date in the classical RAM model, which therefore cannot convert the advantage of unlimited memory and random access into superior computing times for these problems.  相似文献   

4.
Let λ(G) be the edge connectivity of G. The direct product of graphs G and H is the graph with vertex set V(G×H)=V(GV(H), where two vertices (u1,v1) and (u2,v2) are adjacent in G×H if u1u2E(G) and v1v2E(H). We prove that λ(G×Kn)=min{n(n−1)λ(G),(n−1)δ(G)} for every nontrivial graph G and n?3. We also prove that for almost every pair of graphs G and H with n vertices and edge probability p, G×H is k-connected, where k=O(2(n/logn)).  相似文献   

5.
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O(2nz), where n is the number of vertices of G. As a consequence, our algorithm is able to solve the dominating set problem on bipartite graphs in time O(2n/2). Another implication is an algorithm for general graphs whose running time is O(n1.7088).  相似文献   

6.
We give improved parameterized algorithms for two “edge” problems MAXCUT and MAXDAG, where the solution sought is a subset of edges. MAXCUT of a graph is a maximum set of edges forming a bipartite subgraph of the given graph. On the other hand, MAXDAG of a directed graph is a set of arcs of maximum size such that the graph induced on these arcs is acyclic. Our algorithms are obtained through new kernelization and efficient exact algorithms for the optimization versions of the problems. More precisely our results include:
(i)
a kernel with at most αk vertices and βk edges for MAXCUT. Here 0<α?1 and 1<β?2. Values of α and β depends on the number of vertices and the edges in the graph;
(ii)
a kernel with at most 4k/3 vertices and 2k edges for MAXDAG;
(iii)
an O(k1.2418) parameterized algorithm for MAXCUT in undirected graphs. This improves the O(k1.4143)1 algorithm presented in [E. Prieto, The method of extremal structure on the k-maximum cut problem, in: The Proceedings of Computing: The Australasian Theory Symposium (CATS), 2005, pp. 119-126];
(iv)
an O(n2) algorithm for optimization version of MAXDAG in directed graphs. This is the first such algorithm to the best of our knowledge;
(v)
an O(k2) parameterized algorithm for MAXDAG in directed graphs. This improves the previous best of O(k4) presented in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458];
(vi)
an O(k16) parameterized algorithm to determine whether an oriented graph having m arcs has an acyclic subgraph with at least m/2+k arcs. This improves the O(k2) algorithm given in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446-458].
In addition, we show that if a directed graph has minimum out degree at least f(n) (some function of n) then Directed Feedback Arc Set problem is fixed parameter tractable. The parameterized complexity of Directed Feedback Arc Set is a well-known open problem.  相似文献   

7.
The k-clique problem is a cornerstone of NP-completeness and parametrized complexity. When k is a fixed constant, the asymptotically fastest known algorithm for finding a k-clique in an n-node graph runs in O(n0.792k) time (given by Nešet?il and Poljak). However, this algorithm is infamously inapplicable, as it relies on Coppersmith and Winograd's fast matrix multiplication.We present good combinatorial algorithms for solving k-clique problems. These algorithms do not require large constants in their runtime, they can be readily implemented in any reasonable random access model, and are very space-efficient compared to their algebraic counterparts. Our results are the following:
We give an algorithm for k-clique that runs in O(nk/(εlogn)k−1) time and O(nε) space, for all ε>0, on graphs with n nodes. This is the first algorithm to take o(nk) time and O(nc) space for c independent of k.
Let k be even. Define a k-semiclique to be a k-node graph G that can be divided into two disjoint subgraphs U={u1,…,uk/2} and V={v1,…,vk/2} such that U and V are cliques, and for all i?j, the graph G contains the edge {ui,vj}. We give an time algorithm for determining if a graph has a k-semiclique. This yields an approximation algorithm for k-clique, in the following sense: if a given graph contains a k-clique, then our algorithm returns a subgraph with at least 3/4 of the edges in a k-clique.
  相似文献   

8.
Given an arbitrary graph G=(V,E) and a proper interval graph H=(V,F) with EF we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph H=(V,F) with EFF, H is not a proper interval graph. In this paper we give a O(n+m) time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.  相似文献   

9.
We introduce the graph parameter boolean-width, related to the number of different unions of neighborhoods-Boolean sums of neighborhoods-across a cut of a graph. For many graph problems, this number is the runtime bottleneck when using a divide-and-conquer approach. For an n-vertex graph given with a decomposition tree of boolean-width k, we solve Maximum Weight Independent Set in time O(n2k22k) and Minimum Weight Dominating Set in time O(n2+nk23k). With an additional n2 factor in the runtime, we can also count all independent sets and dominating sets of each cardinality.Boolean-width is bounded on the same classes of graphs as clique-width. boolean-width is similar to rank-width, which is related to the number of GF(2)-sums of neighborhoods instead of the Boolean sums used for boolean-width. We show for any graph that its boolean-width is at most its clique-width and at most quadratic in its rank-width. We exhibit a class of graphs, the Hsu-grids, having the property that a Hsu-grid on Θ(n2) vertices has boolean-width Θ(logn) and rank-width, clique-width, tree-width, and branch-width Θ(n).  相似文献   

10.
In this paper, we consider the problem of generating all maximal cliques in a sparse graph in polynomial delay. Given a graph G=(V,E) with n vertices and m edges, the latest and fastest polynomial delay algorithm for sparse graphs enumerates all maximal cliques in O(Δ 4) time delay, where Δ is the maximum degree of vertices. However, it requires an O(n?m) preprocessing time. We improve it in two aspects. First, our algorithm does not need preprocessing. Therefore, our algorithm is a truly polynomial delay algorithm. Second, our algorithm enumerates all maximal cliques in O(Δ?H 3) time delay, where H is the so called H-value of a graph or equivalently it is the smallest integer satisfying |{vVδ(v)≥H}|≤H given δ(v) as the degree of a vertex. In real-world network data, H usually is a small value and much smaller than Δ.  相似文献   

11.
Due to a large number of applications, bicliques of graphs have been widely considered in the literature. This paper focuses on non-induced bicliques. Given a graph G=(V,E) on n vertices, a pair (X,Y), with X,YV, XY=∅, is a non-induced biclique if {x,y}∈E for any xX and yY. The NP-complete problem of finding a non-induced (k1,k2)-biclique asks to decide whether G contains a non-induced biclique (X,Y) such that |X|=k1 and |Y|=k2. In this paper, we design a polynomial-space O(n1.6914)-time algorithm for this problem. It is based on an algorithm for bipartite graphs that runs in time O(n1.30052). In deriving this algorithm, we also exhibit a relation to the spare allocation problem known from memory chip fabrication. As a byproduct, we show that the constraint bipartite vertex cover problem can be solved in time O(n1.30052).  相似文献   

12.
We describe a simple combinatorial approximation algorithm for finding a shortest (simple) cycle in an undirected graph. Given an adjacency-list representation of an undirected graph G with n vertices and unknown girth k, our algorithm returns with high probability a cycle of length at most 2k for even k and 2k+2 for odd k, in time . Thus, in general, it yields a approximation. For a weighted, undirected graph, with non-negative edge weights in the range {1,2,…,M}, we present a simple combinatorial 2-approximation algorithm for a minimum weight (simple) cycle that runs in time O(n2logn(logn+logM)).  相似文献   

13.
The input of the Edge Multicut problem consists of an undirected graph G and pairs of terminals {s1,t1},…,{sm,tm}; the task is to remove a minimum set of edges such that si and ti are disconnected for every 1?i?m. The parameterized complexity of the problem, parameterized by the maximum number k of edges that are allowed to be removed, is currently open. The main result of the paper is a parameterized 2-approximation algorithm: in time f(k)⋅nO(1), we can either find a solution of size 2k or correctly conclude that there is no solution of size k.The proposed algorithm is based on a transformation of the Edge Multicut problem into a variant of the parameterized Max-2SAT problem, where the parameter is related to the number of clauses that are not satisfied. It follows from previous results that the latter problem can be 2-approximated in a fixed-parameter time; on the other hand, we show here that it is W[1]-hard. Thus the additional contribution of the present paper is introducing the first natural W[1]-hard problem that is constant-ratio fixed-parameter approximable.  相似文献   

14.
A hub set in a graph G is a set UV(G) such that any two vertices outside U are connected by a path whose internal vertices lie in U. We prove that h(G)?hc(G)?γc(G)?h(G)+1, where h(G), hc(G), and γc(G), respectively, are the minimum sizes of a hub set in G, a hub set inducing a connected subgraph, and a connected dominating set. Furthermore, all graphs with γc(G)>hc(G)?4 are obtained by substituting graphs into three consecutive vertices of a cycle; this yields a polynomial-time algorithm to check whether hc(G)=γc(G).  相似文献   

15.
Vertex Covering by Paths on Trees with applications in machine translation is the task to cover all vertices of a tree T=(V,E) by choosing a minimum-weight subset of given paths in the tree. The problem is NP-hard and has recently been solved by an exact algorithm running in O(C42|V|) time, where C denotes the maximum number of paths covering a tree vertex. We improve this running time to O(C2C⋅|V|). On the route to this, we introduce the problem Tree-like Weighted Hitting Set which might be of independent interest. In addition, for the unweighted case of Vertex Covering by Paths on Trees, we present an exact algorithm using a search tree of size O(k2k!), where k denotes the number of chosen covering paths. Finally, we briefly discuss the existence of a size-O(k2) problem kernel.  相似文献   

16.
There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a k O(dk) n time algorithm for finding a dominating set of size at most k in a d-degenerated graph with n vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain K h as a topological minor, we give an improved algorithm for the problem with running time (O(h)) hk n. For graphs which are K h -minor-free, the running time is further reduced to (O(log h)) hk/2 n. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs. For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed H and k, we show that if an H-minor-free graph G with n vertices contains an induced cycle of size k, then such a cycle can be found in O(n) expected time as well as in O(nlog n) worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs. A preliminary version of this paper appeared in the Proceedings of the 13th Annual International Computing and Combinatorics Conference (COCOON), Banff, Alberta, Canada (2007), pp. 394–405. N. Alon research supported in part by a grant from the Israel Science Foundation, and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. This paper forms part of a Ph.D. thesis written by S. Gutner under the supervision of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.  相似文献   

17.
Let G be any finite graph. A mapping c:E(G)→{1,…,k} is called an acyclic edge k-colouring of G, if any two adjacent edges have different colours and there are no bichromatic cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced in G by all the edges that have colour i or j is acyclic. The smallest number k of colours such that G has an acyclic edge k-colouring is called the acyclic chromatic index of G and is denoted by .Determining the acyclic chromatic index of a graph is a hard problem, both from theoretical and algorithmical point of view. In 1991, Alon et al. proved that for any graph G of maximum degree Δ(G). This bound was later improved to 16Δ(G) by Molloy and Reed. In general, the problem of computing the acyclic chromatic index of a graph is NP-complete. Only a few algorithms for finding acyclic edge colourings have been known by now. Moreover, these algorithms work only for graphs from particular classes.In our paper, we prove that for every graph G which satisfies the condition that |E(G)|?t|V(G)|−1 for each subgraph GG, where t?2 is a given integer, the constant p=2t3−3t+2. Based on that result, we obtain a polynomial algorithm which computes such a colouring. The class of graphs covered by our theorem is quite rich, for example, it contains all t-degenerate graphs.  相似文献   

18.
For a connected graph G=(V,E), a subset UV is a disconnected cut if U disconnects G and the subgraph G[U] induced by U is disconnected as well. A cut U is a k-cut if G[U] contains exactly k(≥1) components. More specifically, a k-cut U is a (k,?)-cut if V?U induces a subgraph with exactly ?(≥2) components. The Disconnected Cut problem is to test whether a graph has a disconnected cut and is known to be NP-complete. The problems k-Cut and (k,?)-Cut are to test whether a graph has a k-cut or (k,?)-cut, respectively. By pinpointing a close relationship to graph contractibility problems we show that (k,?)-Cut is in P for k=1 and any fixed constant ?≥2, while it is NP-complete for any fixed pair k,?≥2. We then prove that k-Cut is in P for k=1 and NP-complete for any fixed k≥2. On the other hand, for every fixed integer g≥0, we present an FPT algorithm that solves (k,?)-Cut on graphs of Euler genus at most g when parameterized by k+?. By modifying this algorithm we can also show that k-Cut is in FPT for this graph class when parameterized by k. Finally, we show that Disconnected Cut is solvable in polynomial time for minor-closed classes of graphs excluding some apex graph.  相似文献   

19.
In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of a graph such that these guards can protect the graph from any sequence of attacks on its edges. In response to an attack, each guard is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at least one guard has to fix the attacked edge by moving along it. The other guards may move to reconfigure and prepare for the next attack. Thus at every step the vertices occupied by guards form a vertex cover. We show that the problem admits a kernel of size k4(k+1)+2k, which shows that the problem is fixed parameter tractable when parameterized by the number of available guards k. Finally, we also provide an algorithm with running time O(2O(k2)+nm) for Eternal Vertex Cover, where n is the number of vertices and m the number of edges of the input graph. In passing we also observe that Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm.  相似文献   

20.
A homogeneous set is a non-trivial module of a graph, i.e., a non-unitary, proper subset H of a graph's vertices such that all vertices in H have the same neighbors outside H. Given two graphs G1(V,E1), G2(V,E2), the Homogeneous Set Sandwich Problem asks whether there exists a sandwich graph GS(V,ES), E1ESE2, which has a homogeneous set. Recently, Tang et al. [Inform. Process. Lett. 77 (2001) 17-22] proposed an interesting O(?1n2) algorithm for this problem, which has been considered its most efficient algorithm since. We show the incorrectness of their algorithm by presenting three counterexamples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号