共查询到20条相似文献,搜索用时 15 毫秒
1.
Jae-Hyeok Lee Won-Seok Kang Bung-Sam Choi Sung-Wook Choi Jae-Ho Kim 《Ultramicroscopy》2008,108(10):1163
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir–Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3 nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes. 相似文献
2.
B. LE SAUX B. CHALMOND Y. YU A. TROUVÉ O. RENAUD† & S.L. SHORTE† 《Journal of microscopy》2009,233(3):404-416
Recently, micro-rotation confocal microscopy has enabled the acquisition of a sequence of micro-rotated images of nonadherent living cells obtained during a partially controlled rotation movement of the cell through the focal plane. Although we are now able to estimate the three-dimensional position of every optical section with respect to the cell frame, the reconstruction of the cell from the positioned micro-rotated images remains a last task that this paper addresses. This is not strictly an interpolation problem since a micro-rotated image is a convoluted two-dimensional map of a three-dimensional reality. It is rather a 'reconstruction from projection' problem where the term projection is associated to the PSF of the deconvolution process. Micro-rotation microscopy has a specific difficulty. It does not yield a complete coverage of the volume. In this paper, experiments illustrate the ability of the classical EM algorithm to deconvolve efficiently cell volume despite of the incomplete coverage. This cell reconstruction method is compared to a kernel-based method of interpolation, which does not take account explicitly the point-spread-function (PSF). It is also compared to the standard volume obtained from a conventional z-stack. Our results suggest that deconvolution of micro-rotation image series opens some exciting new avenues for further analysis, ultimately laying the way towards establishing an enhanced resolution 3D light microscopy. 相似文献
3.
Alexander Dulebo Johannes Preiner Ferry Kienberger Gerald Kada Christian Rankl Lilia Chtcheglova Constanze Lamprecht David Kaftan Peter Hinterdorfer 《Ultramicroscopy》2009
Higher harmonic contributions in the movement of an oscillating atomic force microscopy (AFM) cantilever are generated by nonlinear tip–sample interactions, yielding additional information on structure and physical properties such as sample stiffness. Higher harmonic amplitudes are strongly enhanced in liquid compared to the operation in air, and were previously reported to result in better structural resolution in highly organized lattices of proteins in bacterial S-layers and viral capsids [J. Preiner, J. Tang, V. Pastushenko, P. Hinterdorfer, Phys. Rev. Lett. 99 (2007) 046102]. We compared first and second harmonics AFM imaging of live and fixed human lung epithelial cells, and microvascular endothelial cells from mouse myocardium (MyEnd). Phase–distance cycles revealed that the second harmonic phase is 8 times more sensitive than the first harmonic phase with respect to variations in the distance between cantilever and sample surface. Frequency spectra were acquired at different positions on living and fixed cells with second harmonic amplitude values correlating with the sample stiffness. We conclude that variations in sample stiffness and corresponding changes in the cantilever–sample distance, latter effect caused by the finite feedback response, result in second harmonic images with improved contrast and information that is not attainable in the fundamental frequency of an oscillating cantilever. 相似文献
4.
5.
The emerging interest in understanding the interactions of nanomaterial with biological systems necessitates imaging tools that capture the spatial and temporal distributions and attributes of the resulting nano–bio amalgam. Studies targeting organ specific response and/or nanoparticle-specific system toxicity would be profoundly benefited from tools that would allow imaging and tracking of in-vivo or in-vitro processes and particle-fate studies. Recently we demonstrated that mode synthesizing atomic force microscopy (MSAFM) can provide subsurface nanoscale information on the mechanical properties of materials at the nanoscale. However, the underlying mechanism of this imaging methodology is currently subject to theoretical and experimental investigation. In this paper we present further analysis by investigating tip-sample excitation forces associated with nanomechanical image formation. Images and force curves acquired under various operational frequencies and amplitudes are presented. We examine samples of mouse cells, where buried distributions of single-walled carbon nanohorns and silica nanoparticles are visualized. 相似文献
6.
C. Lamprecht J. Danzberger P. Lukanov C.-M. Tîlmaciu A.-M. Galibert B. Soula E. Flahaut H.J. Gruber P. Hinterdorfer A. Ebner F. Kienberger 《Ultramicroscopy》2009
We present a comparative study of several non-covalent approaches to disperse, debundle and non-covalently functionalize double-walled carbon nanotubes (DWNTs). We investigated the ability of bovine serum albumin (BSA), phospholipids grafted onto amine-terminated polyethylene glycol (PL-PEG2000-NH2), as well as a combination thereof, to coat purified DWNTs. Topographical imaging with the atomic force microscope (AFM) was used to assess the coating of individual DWNTs and the degree of debundling and dispersion. Topographical images showed that functionalized DWNTs are better separated and less aggregated than pristine DWNTs and that the different coating methods differ in their abilities to successfully debundle and disperse DWNTs. Height profiles indicated an increase in the diameter of DWNTs depending on the functionalization method and revealed adsorption of single molecules onto the nanotubes. Biofunctionalization of the DWNT surface was achieved by coating DWNTs with biotinylated BSA, providing for biospecific binding of streptavidin in a simple incubation step. Finally, biotin-BSA-functionalized DWNTs were immobilized on an avidin layer via the specific avidin–biotin interaction. 相似文献
7.
T. Dziomba H. U. Danzebrink C. Lehrer† L. Frey† T. Sulzbach‡ & O. Ohlsson‡ 《Journal of microscopy》2001,202(1):22-27
We present high-resolution aperture probes based on non-contact silicon atomic force microscopy (AFM) cantilevers for simultaneous AFM and near-infrared scanning near-field optical microscopy (SNOM). For use in near-field optical microscopy, conventional AFM cantilevers are modified by covering their tip side with an opaque aluminium layer. To fabricate an aperture, this metal layer is opened at the end of the polyhedral probe using focused ion beams (FIB). Here we show that apertures of less than 50 nm can be obtained using this technique, which actually yield a resolution of about 50 nm, corresponding to λ/20 at the wavelength used. To exclude artefacts induced by distance control, we work in constant-height mode. Our attention is particularly focused on the distance dependence of resolution and to the influence of slight cantilever bending on the optical images when scanning at such low scan heights, where first small attractive forces exerted on the cantilever become detectable. 相似文献
8.
The operation of a force microscope in Simultaneous Topography and Recognition (TREC) imaging mode is analyzed by means of numerical simulations. Both topography and recognition signals are analyzed by using a worm-like chain force as the specific interaction between the functionalized tip probe and the sample. The special feedback mechanism in this mode is shown to couple the phase signal to the presence of molecular recognition interactions even in absence of dissipation. 相似文献
9.
Tathagata De Antony M. Chettoor Pranav Agarwal Murti V. Salapaka Saju Nettikadan 《Ultramicroscopy》2010
The atomic force microscope (AFM) is widely used for studying the surface morphology and growth of live cells. There are relatively fewer reports on the AFM imaging of yeast cells [1] (Kasas and Ikai, 1995), [2] (Gad and Ikai, 1995). Yeasts have thick and mechanically strong cell walls and are therefore difficult to attach to a solid substrate. In this report, a new immobilization technique for the height mode imaging of living yeast cells in solid media using AFM is presented. The proposed technique allows the cell surface to be almost completely exposed to the environment and studied using AFM. Apart from the new immobilization protocol, for the first time, height mode imaging of live yeast cell surface in intermittent contact mode is presented in this report. Stable and reproducible imaging over a 10-h time span is observed. A significant improvement in operational stability will facilitate the investigation of growth patterns and surface patterns of yeast cells. 相似文献
10.
Analysis of force curves obtained on the live cell membrane using chemically modified AFM probes 总被引:2,自引:0,他引:2
Force curves were obtained on the live cell surface using an atomic force microscope mounted with a modified tip with the bifunctional covalent crosslinker, disuccinimidyl suberate, which forms a covalent bond with amino-bearing molecules on the cell surface. A ramp delay time of 1.0 s was introduced before the start of the retraction regime of the force curve to increase the stationary reaction time between the crosslinkers on the tip and the amino groups on the cell surface. While live cell surface responses to forced contact with a non-functionalized tip rarely showed evidence of tip–cell interaction, those obtained with modified tips gave clear indication of prolonged adhesion which was terminated by a single step release of the tip to its neutral position. Under the given experimental conditions of this work, 58% of a total of 198 force curves gave only one jump and 70% of those with one jump gave the final rupture force of 4.5±0.22 nN. The result emphasized the uniqueness of the observed mechanical response of the cell surface when probed with chemically modified tips. 相似文献
11.
A correlative morphologic analysis was carried out on isolated metaphase chromosomes by means of field emission in-lens scanning electron microscopy (FEISEM) and atomic force microscopy (AFM). Whereas FEISEM provides ultra-high resolution power and allows the surface analysis of biological structures free of any conductive coating, the AFM allows imaging of biological specimens in ambient as well as in physiologic conditions. The analysis of the same samples was made possible by the use of electrical conductive and light transparent ITO glass as specimen holder. Further preparation of the specimen specific for the instrumentation was not required. Both techniques show a high correlation of the respective morphologic information, improving their reciprocal biological significance. In particular, the biological coat represents a barrier for surface morphologic analysis of chromosome spreads and it is sensitive to protease treatment. The chemical removal of this layer permits high-resolution imaging of the chromatid fibers but at the same time alters the chromosomal dimension after rehydration. The high-resolution level, necessary to obtain a precise physical mapping of the genome that the new instruments such as FEISEM and AFM could offer, requires homogeneously cleaned samples with a high grade of reproducibility. A correlative microscopical approach that utilizes completely different physical probes provides complementary useful information for the understanding of the biological, chemical, and physical characteristics of the samples and can be applied to optimize the chromosome preparations for further improvement of the knowledge about spatial genome organization. 相似文献
12.
H. U. Danzebrink TH. Dziomba T. Sulzbach O. Ohlsson C. Lehrer & L. Frey 《Journal of microscopy》1999,194(2-3):335-339
The near-field probes described in this paper are based on metallized non-contact atomic force microscope cantilevers made of silicon. For application in high-resolution near-field optical/infrared microscopy, we use aperture probes with the aperture being fabricated by focused ion beams. This technique allows us to create apertures of sub-wavelength dimensions with different geometries. In this paper we present the use of slit-shaped apertures which show a polarization-dependent transmission efficiency and a lateral resolution of < 100 nm at a wavelength of 1064 nm. As a test sample to characterize the near-field probes we investigated gold/palladium structures, deposited on an ultrathin chromium sublayer on a silicon wafer, in constant-height mode. 相似文献
13.
CONGZHOU WANG CRISTINA STANCIU CHRISTOPHER J. EHRHARDT VAMSI K. YADAVALLI 《Journal of microscopy》2015,258(1):49-58
Bacteria from the genus Bacillus are able to transform into metabolically dormant states called (endo) spores in response to nutrient deprivation and other harsh conditions. These morphologically distinct spores are fascinating constructs, amongst the most durable cells in nature, and have attracted attention owing to their relevance in food‐related illnesses and bioterrorism. Observing the course of bacterial spore formation (sporulation) spatially, temporally and mechanically, from the vegetative cell to a mature spore, is critical for a better understanding of this process. Here, we present a fast and versatile strategy for monitoring both the morphological and mechanical changes of Bacillus cereus bacteria at the nanoscale using atomic force microscopy. Through a strategy of imaging and nanomechanical mapping, we show the morphogenesis of the endospore and released mature endospore. Finally, we investigate individual spores to characterize their surface mechanically. The progression in elasticity coupled with a similarity of characteristic distributions between the incipient endospores and the formed spores show these distinct stages. Taken together, our data demonstrates the power of atomic force microscopy applied in microbiology for probing this important biological process at the single cell scale. 相似文献
14.
Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 μm within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of ≤10–15 μm into the sample, further compounding the ability to image at high-resolution deep within tissue. We show that manipulating the refractive index of the mounting media and decreasing sample opacity greatly improves image quality such that the limiting factor for a standard, inverted multi-photon microscope is determined by the working distance of the objective as opposed to detectable fluorescence. This method negates the need for mechanical sectioning of tissue and enables the routine generation of high-quality, quantitative image data that can significantly advance our understanding of tissue architecture and physiology. 相似文献
15.
With the integration of submicro- and nanoelectrodes into atomic force microscopy (AFM) probes using microfabrication techniques, an elegant approach combining scanning electrochemical microscopy (SECM) with AFM has recently been introduced. Simultaneous contact mode imaging of a micropatterned sample with immobilized enzyme spots and imaging of enzyme activity is shown. In contrast to force spectroscopy the conversion of an enzymatic byproduct is directly detected during AFM imaging and correlated to the activity of the enzyme. 相似文献
16.
The frictional properties of cluster assembled carbon films have been investigated on nanometric scale by friction force microscopy. The experiment was performed at low loads to avoid plastic deformation and wear of materials. We found that load-dependent measurements acquired on samples with different composition present excellent agreement with the Hertzian-plus-offset model. A quantitative comparison among these films and atom-assembled carbon compounds is finally presented. 相似文献
17.
Coaxial probes for scanning near-field microscopy 总被引:1,自引:0,他引:1
T. Leinhos O. Rudow M. Stopka A. Vollkopf & E. Oesterschulze 《Journal of microscopy》1999,194(2-3):349-352
This paper deals with the development of coaxial aperture tips integrated in a cantilever probe for combined scanning near-field infrared microscopy and scanning force microscopy. A fabrication process is introduced that allows the batch fabrication of hollow metal aperture tips integrated on a silicon cantilever. To achieve the coaxial tip arrangement a metal rod is deposited inside the hollow tip using the focused ion beam technique. Theoretical calculations with a finite integration code were performed to study the transmission characteristics of coaxial tips in comparison with conventional aperture probes. In addition, the influence of the geometrical design parameters of the coaxial probe on its optical behaviour is investigated. 相似文献
18.
Daniel Platz Erik A. Tholén Carsten Hutter Arndt C. von Bieren David B. Haviland 《Ultramicroscopy》2010
Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning. Amplitude and phase images at intermodulation frequencies exhibit enhanced topographic and material contrast. 相似文献
19.
《Measurement》2016
We present a remotely-controlled device for sample stretching, designed for use with atomic force microscopy (AFM) and providing electrical connection to the sample. Such a device enables nanoscale investigation of electrical properties of thin gold films deposited on polydimethylsiloxane (PDMS) substrate as a function of the elongation of the structure. Stretching and releasing is remotely controlled with use of a dc actuator. Moreover, the sample is stretched symmetrically, which gives an opportunity to perform AFM scans in the same site without a time-consuming finding procedure. Electrical connections to the sample are also provided, enabling Kelvin probe force microscopy (KPFM) investigations. Additionally, we present results of AFM imaging using the stretching stage. 相似文献
20.
The resonant frequencies and flexural sensitivities of an atomic force microscope (AFM) with assembled cantilever probe (ACP) are studied. This ACP comprises a horizontal cantilever, a vertical extension and two tips located at the free ends of the cantilever and the extension, which makes the AFM capable of simultaneous topography at top surface and sidewalls of microstructures especially microgears, which consequently leads to a time-saving swift scanning process. In this work, the effects of the sample surface contact stiffness and the geometrical parameters such as the ratio of the vertical extension length to the horizontal cantilever length and the distance of the vertical extension from clamped end of the horizontal cantilever on both flexural and torsional resonant frequencies and sensitivities are assessed. These geometrical effects are illustrated in some figures. The results show that the low-order vibration modes are more sensitive for low values of the contact stiffness, but the situation is reversed for high values. 相似文献