首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Key to the integrity of atom probe microanalysis, the tomographic reconstruction is built atom by atom following a simplistic protocol established for previous generations of instruments. In this paper, after a short review of the main reconstruction protocols, we describe recent improvements originating from the use of exact formulae enabling significant reduction of spatial distortions, especially near the edges of the reconstruction. We also show how predictive values for the reconstruction parameters can be derived from electrostatic simulations, and finally introduce parameters varying throughout the analysis.  相似文献   

2.
The implementation of fast pulsed laser has significantly improved the performance of the atom probe technique by enabling near-atomic-scale three-dimensional analysis of poorly conducting materials. This has broadened the range of applications for the atom probe, addressing a major limitation of the technique. Despite this, the implications of lasing on the tomographic reconstruction of atom probe data have yet to be fully characterised. Here, we demonstrate how changes in the shape of the specimen surface, induced by laser pulsing, affect the ion trajectories, and hence the projection parameters used to build the three-dimensional map.  相似文献   

3.
Atom probe tomography is an accurate analytical and imaging technique which can reconstruct the complex structure and composition of a specimen in three dimensions. Despite providing locally high spatial resolution, atom probe tomography suffers from global distortions due to a complex projection function between the specimen and detector which is different for each experiment and can change during a single run. To aid characterization of this projection function, this work demonstrates a method for the reverse projection of ions from an arbitrary projection surface in 3D space back to an atom probe tomography specimen surface. Experimental data from transmission electron microscopy tilt tomography are combined with point cloud surface reconstruction algorithms and finite element modelling to generate a mapping back to the original tip surface in a physically and experimentally motivated manner. As a case study, aluminium tips are imaged using transmission electron microscopy before and after atom probe tomography, and the specimen profiles used as input in surface reconstruction methods. This reconstruction method is a general procedure that can be used to generate mappings between a selected surface and a known tip shape using numerical solutions to the electrostatic equation, with quantitative solutions to the projection problem readily achievable in tens of minutes on a contemporary workstation.  相似文献   

4.
A three-dimensional atom probe permits the elemental reconstruction of a small volume of a specimen by determining the x , y and z positions and mass-to-charge ratio of the atoms in that volume. The historical development of this new type of atom probe is described. Several variants of these instruments including the position-sensitive atom probe, the optical atom probe and the tomographic atom probe are reviewed. The various methods of data visualization and analysis are summarized. The performance of the three-dimensional atom probe is compared with the energy-compensated atom probe.  相似文献   

5.
Progress in the reconstruction for atom probe tomography has been limited since the first implementation of the protocol proposed by Bas et al. in 1995. This approach and those subsequently developed assume that the geometric parameters used to build the three-dimensional atom map are constant over the course of an analysis. Here, we test this assumption within the analyses of low-alloyed materials. By building upon methods recently proposed to measure the tomographic reconstruction parameters, we demonstrate that this assumption can introduce significant limitations in the accuracy of the analysis. Moreover, we propose a strategy to alleviate this problem through the implementation of a new reconstruction algorithm that dynamically accommodates variations in the tomographic reconstruction parameters.  相似文献   

6.
Standard atom probe tomography spatial reconstruction techniques have been reasonably successful in reproducing single crystal datasets. However, artefacts persist in the reconstructions that can be attributed to the incorrect assumption of a spherical evaporation surface. Using simulated and experimental field evaporation, we examine the expected shape of the evaporating surface and propose the use of a variable point projection position to mitigate to some degree these reconstruction artefacts. We show initial results from an implementation of a variable projection position, illustrating the effect on simulated and experimental data, while still maintaining a spherical projection surface. Specimen shapes during evaporation of model structures with interfaces between regions of low- and high-evaporation-field material are presented. Use of two-and three-dimensional projection-point maps in the reconstruction of more complicated datasets is discussed.  相似文献   

7.
A position-sensitive detector has been combined with time-of-flight mass spectrometry in the atom probe field-ion microscope to yield a system in which both chemical identity and spatial information are obtained for individual ions field-evaporated from the specimen surface. This allows the variations in composition originally present in the sample to be reconstructed in 3-D with sub-nanometre resolution. The prototype position-sensitive atom probe is being used to study phase chemistry in a number of metallurgical alloys, including accurate composition determination of 1–2 nm Cu-rich precipitates formed in Fe–1.3% Cu–1.4%Ni aged to peak hardness. Other applications of the position-sensitive atom probe (POSAP) include the analysis of surface layers on superconductors and atom probe studies of semiconductor multiple quantum wells. These initial applications of the instrument are reported, and the limitations and intended improvements to the instrument are discussed.  相似文献   

8.
A limiting characteristic of the atom‐probe technique is the nondetection of ions and this embodies a significant “missing information” problem in investigations of atomic clustering phenomena causing difficulty in the interpretation of any atom‐probe experiment. It is shown that the measurable cluster‐size distribution can be modeled by a mixed binomial distribution. A deconvolution method based upon expectation‐maximization (EM) algorithm is presented to obtain the original physical distribution from an efficiency‐degraded distribution, thereby providing means to calculate accurate cluster number densities from atom probe results. The accuracy of this restoration was predominantly dependent upon the detector efficiency and was proved to be highly accurate in the case of conventional atom‐probe detector efficiencies (? = 57%). Such considerations and measures are absolutely necessary when the number density of clusters and small precipitates is in any way regarded as important. We conclude that limitations in detector efficiency are more limiting for cluster‐finding analyses via atom‐probe techniques than spatial resolution issues, and therefore the current endeavors for improving detector technologies are well found. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
In some applications, the size of the probe volume of a Laser Doppler Anemometry (LDA) system limits the spatial resolution of the measurement. If the probe volume is far from the LDA probe due to limited optical access, the probe volume cannot be assumed as a point. It becomes an ellipsoid, which allows no spatial correlation of a registered burst. In this work, a tomographic algorithm is presented to locate registered bursts along an extended LDA probe volume by means of a tomographic reconstruction with the inverse Radon transformation. The integral information of velocity and particle number within the probe volume is analyzed to obtain sub-volume resolution, which is only limited by the increment of traversing the probe volume through the flow field, the width of the probe volume and the number of projections. The algorithm is used to reconstruct the velocity field of a fuel spray from LDA measurements at different injection pressures.  相似文献   

10.
New and improved spatial distribution map (SDM) methods are developed to identify and extract crystallographic information within atom probe tomography three-dimensional (3D) reconstructions. Detailed structural information is retrieved by combining z-SDM offset distribution analyses computed in multiple crystallographic directions, accurately determining inter-planar spacings and crystallographic angles. The advantages of this technique in comparison to applying the complete z-SDM and complementary xy-SDM analysis to a single crystallographic direction are investigated. Further, in determining these multidirectional z-SDM and xy-SDM profiles, background noise reduction and automatic peak identification algorithms are adapted to attain increased accuracy and is shown to be particularly effective in cases where crystal structure is present but poorly resolved. These techniques may be used to calibrate the reconstruction parameters and investigate their dependence on the design of individual atom probe experiments.  相似文献   

11.
12.
We devised and tested a computed tomography approach that utilises a scanned electron beam X-ray source to produce fast tomographic image sequences of transient density distributions. Potential application areas for this technique are the visualisation and measurement of two-phase and particle flows in thermofluid dynamics research, chemical processes, or transport systems for fluids and bulk solids. In our setup we used a linear deflection pattern for the electron beam and a non-annular detector arc to record transmission data of an object from different projection angles. This approach gives the highest achievable axial resolution and is comparatively moderate in effort and costs. For the inverse problem we applied iterative image reconstruction techniques to reconstruct the density distribution from a limited data set. The method has been experimentally tested on static and dynamic phantoms with a frame rate of 1000 images per second and a spatial resolution of approximately 1 mm in plane and axial.  相似文献   

13.
Tomographic reconstruction by transmission electron microscopy is used to reveal three‐dimensional nanoparticle shapes and the stacking configurations of nanoparticle ensembles. Reconstructions are generated from bright‐field image tilt series, with a sample tilt range up to ± 70°, using single or dual tilt axes. We demonstrate the feasibility of this technique for the analysis of nanomaterials, using appropriate acquisition conditions. Tomography reveals both cubic and hexagonal close‐packing configurations in multi‐layered arrays of size‐selected In nanospheres. By tomography and phase‐contrast lattice imaging, we relate the three‐dimensional shape of PbSe octahedral nanoparticles to the underlying crystal structure. We also confirm simple‐cubic packing in multi‐layers of PbSe nanocubes and see evidence that the particle shapes have cubic symmetry. The shapes of TiO2 nanorod bundles are shown by tomographic reconstruction to resemble flattened ellipsoids.  相似文献   

14.
Optical Diffraction Tomography is a technique for retrieving a 3-dimensional refractive index distribution from phase objects without destroying the structure of the samples. In the article we discuss the selection and implementation of full and limited angle version of tomographic reconstruction processes together with the analysis of different methods for gathering projections. We present two efficient implementations of full and limited angle tomographic systems including total processing paths and providing the examplary results of 3-D refractive index determination measurements of biological samples.  相似文献   

15.
Kodzuka M  Ohkubo T  Hono K 《Ultramicroscopy》2011,111(6):557-561
We demonstrate that the atom probe analyses of metallic thin films on insulating substrates are possible using laser assisted field evaporation. The tips with metallic thin film and insulating substrate (0.6-3 μm in thickness) were prepared by the lift-out and annular ion beam milling techniques on tungsten supports. In spite of the existence of thick insulating layer between the metallic film and the tungsten support, atom probe tomography with practical mass resolution, signal-to-noise ratio and spatial resolution was found to be possible using laser assisted field evaporation.  相似文献   

16.
Midgley PA  Weyland M 《Ultramicroscopy》2003,96(3-4):413-431
The rapid advances in nanotechnology and the ever decreasing size of features in the microelectronics industry brings with it the need for advanced characterisation with high spatial resolution in two and three dimensions. Stereo microscopy allows some insight into the three-dimensional nature of an object but for true quantitative analysis, one has to turn to tomography as a way to reconstruct a three-dimensional object from a series of two-dimensional projections (images). X-ray tomography allow structures to be imaged at relatively large length scales, atom probe tomography at the atomic level. Electron tomography offers an intermediate resolution (of about 1nm) with a field of view of hundreds of nm making it ideal for the characterisation of many nanoscale devices. Whilst electron tomography has been used in the biological sciences for more than 30 years, it is only now being applied to the physical sciences. In this paper, we review the status of electron tomography, describe the basis behind the technique and some of the practicalities of recording and analysing data for tomographic reconstruction, particularly in regard to solving three-dimensional problems that are encountered in materials science at the nanometre level. We present examples of how STEM dark-field imaging and energy-filtered TEM can be used successfully to examine nearly all types of specimens likely to be encountered by the physical scientist.  相似文献   

17.
A new algorithm is developed to explore the next neighbourhood atomic vicinity from the analysed data obtained using the tomographic atom probe (TAP) technique. The presented algorithm allows to calculate the atomic distances among different next neighbours of different elements as applied to bulk amorphous alloys. The results obtained for Pd55 Cu23 P22 bulk amorphous alloys show reasonable consistency to already available data from different diffraction techniques. The Pd-Pd atoms have highest probability to be a next neighbour than others. The established view that P is not a direct next neighbour to each other is also manifested from these results. Normalizing the distances of the next neighbours to the first neighbour distance in this particular amorphous system possesses a definite order for all elemental correlations. Furthermore, the algorithm was processed for different critical reconstruction parameters to explore the corresponding effect on the distance distribution of next neighbouring atoms. The minor changes in the product of the geometric factor and the evaporation field of the sample does not make any egregious difference on the next neighbourhood evaluation (NNE).  相似文献   

18.
The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys.  相似文献   

19.
A comparison of transmission electron microscopy (TEM) and atom probe field-ion microscopy (APFIM) is presented with respect to the interpretation of complex microstructures, phase identification, determination of crystallographic order, and analysis of interfaces. The capabilities, spatial resolutions, and limitations of each technique are discussed with examples taken from combined analytical electron microscopy (AEM) and APFIM studies. Both techniques are extremely powerful for routine characterization of a wide range of materials, although care must be exercised in experimentation and interpretation. The combined use of TEM and APFIM is synergistic and extends their individual capabilities from the macro scale to the atomic level.  相似文献   

20.
In-depth analysis of pulsed laser atom probe tomography (APT) data on the field evaporation of the III-V semiconductor material GaSb reveals strong variations in charge states, relative abundances of different cluster ions, multiplicity of detector events and spatial correlation of evaporation events, as a function of the effective electric field at the specimen surface. These variations are discussed in comparison with the behaviour of two different metallic specimen materials, an Al-6XXX series alloy and pure W, studied under closely related experimental conditions in the same atom probe instrument. It is proposed that the complex behaviour of GaSb originates from a combination of spatially correlated evaporation events and the subsequent field induced dissociation of cluster ions, the latter contributing to inaccuracies in the overall atom probe composition determination for this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号