首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 6 毫秒
1.
The random sampling provided by classical atom probe sample preparation methods is one of the major factors limiting the types of problems that can be addressed using this powerful technique. A focused ion beam enables not only site-specific preparation, but can also be used to give the specimen, which acts as the lens in an atom probe experiment, a specific shape. In this paper we present a technique that uses low accelerating voltages (10 and 5 kV) in the focused ion beam (FIB) to reproducibly produce specimens with selected grain boundaries <100 nm from the tip at any desired orientation. These tips have a high rate of successfully running in the atom probe and no Ga contamination within the region of interest.This technique is applied to the analysis of grain boundaries in a high purity iron wire and a strip-cast steel. Lattice resolution is achieved around the boundary in certain areas. Reconstruction of these datasets reveals the distribution of light and heavy elements around the boundary. Issues surrounding the uneven distribution of certain solute elements as a result of field-induced diffusion are discussed.  相似文献   

2.
A site-specific method for measuring solute segregation at grain boundaries in an Aluminum alloy is presented. A Σ7(Σ7=38°〈1 1 1〉) grain boundary (GB) in an aluminum alloy (Zr, Cu as main alloying elements) was evaluated using site-specific Local Electrode Atom Probe (LEAP). A sample containing a Σ7 GB was prepared by combining electron backscatter diffraction (EBSD) and focused ion beam (FIB) milling to locate the GB of interest and extract a specimen. Its composition was determined by LEAP, and compared to a general high angle GB (HAGB). Zr was the only alloying element present in the Σ7 GB, whereas the general HAGB contained both Cu and Zr. This site-specific LEAP method was found to be an accurate method for measuring GB segregation at specific GB misorientations. The method has advantages over other methods of measuring chemistry at GBs, such as spectroscopy, in that GB structure can be assessed in three dimensions.  相似文献   

3.
State-of-the art atom probe tomography (APT) combined with transmission electron microscopy (TEM) were used to investigate the microstructure at different stages of the ageing process of an alloy of composition (at%) Al-1.68%Cu-4.62%Li-0.33%Mg-0.1%Ag. These alloys were shown to exhibit a complex microstructure of T1 plates and several metastable phases, including θ′ and S. We will highlight the early stages of clustering, precipitate interactions and possible solute segregation at the matrix/precipitate interfaces and detail the chemical composition of the different phases.  相似文献   

4.
Nanometre scale clusters form in Cu-containing reactor pressure vessel (RPV) steels during neutron irradiation. These clusters have a deleterious effect on mechanical properties, which can result in embrittlement and limit the reactor operating life. Thermal ageing of RPV steels can also induce the formation of solute clusters but it is not clear how similar these are to those formed during irradiation. In this work atom probe tomography, combined with detailed structural assessments of the structure of solute clusters, is used to address this issue.A series of thermal ageing heat treatments has been performed on several high- and low-Ni RPV welds to produce 1-4 nm diameter solute clusters. The same materials have also been neutron irradiated.The results show that CuMnNiSi enriched clusters formed during thermal ageing have, on average, higher Cu contents and lower Mn, Ni and Si contents than those found in irradiation-induced clusters. The effect of increasing bulk Ni is to encourage the formation of clusters with significantly higher Ni content, slightly higher Mn and Si contents and significantly lower Cu contents. At very high doses and dose rates MnNiSi enriched clusters can form even in high-Cu welds.Despite differences in the compositions of individual clusters formed during irradiation and during thermal ageing, clusters in both exhibit similar structure. In particular, well developed clusters in both materials have Cu-enriched cores whose peripheries are enriched in Ni, Mn and, in most cases, Si.  相似文献   

5.
Chiang  Wang  & Lee 《Journal of microscopy》1998,191(3):275-285
Grain boundaries in model ZnO–Bi2O3 and ZnO–Bi2O3–CoO varistors and a commercial multicomponent varistor have been characterized by high-resolution electron microscopy (HREM) and scanning transmission electron microscopy (STEM), in order to determine the relationship between Bi grain boundary segregation and formation of thin intergranular films. By controlling Bi2O3 content, applied pressure and temperature, the grain boundary Bi excess has been systematically varied from nearly zero to ΓBi = 1 × 1015 cm−2 (≈ 1 monolayer), as measured by HB 603 STEM using an area-scan method. HREM shows that intergranular amorphous films are clearly distinguishable in samples with ΓBi > 8 × 1014 cm−2. These films range in thickness, depending on the Bi excess, from 0.6 to 1.5 nm. Similar films of ≈ 1 nm thickness are widely observed in the commercial varistor. The composition of the films is a ZnO–Bi2O3 solid solution, which is in all cases more enriched in ZnO than the bulk eutectic liquid. The Bi-doped grain boundaries in ZnO varistors therefore contain an intergranular amorphous film which has not only an equilibrium thickness, but also a distinct equilibrium composition.  相似文献   

6.
The strengthening of an Al-Mg-Si-Cu alloy during natural ageing and subsequent short artificial ageing was investigated using three-dimensional atom probe (3DAP) analysis and tensile testing. The contingency table and Markov chain analyses confirmed that non-random arrangements of atoms already exist after a natural ageing time of only 3.5 h. Extensive use of particle analysis tools in the IVAS and PoSAP software packages revealed that whilst the commonly used minimum aggregate size (Nmin) of 10 is a reasonable choice, much more useful information about the system can be gained by additionally employing a wide range of larger and smaller Nmin values. In particular, it was found that the density and volume fraction of solute aggregates increased with increasing natural ageing time in the T4 condition. After a 0.5 h artificial ageing treatment at 170 °C (designated as T6), the size, volume fraction and Mg/Si ratio of the aggregates were all found to decrease with increasing prior natural ageing time. These findings are used to discuss the detrimental effect of natural ageing, where the T6 strength has been observed to decrease rapidly with increasing prior natural ageing time before stabilising after several hours of natural ageing.  相似文献   

7.
Over a narrow range of composition, electrodeposited Al-Mn alloys transition from a nanocrystalline structure to an amorphous one, passing through an intermediate dual-phase nanocrystal/amorphous structure. Although the structural change is significant, the chemical difference between the phases is subtle. In this study, the solute distribution in these alloys is revealed by developing a method to enhance phase contrast in atom probe tomography (APT). Standard APT data analysis techniques show that Mn distributes uniformly in single phase (nanocrystalline or amorphous) specimens, and despite some slight deviations from randomness, standard methods reveal no convincing evidence of Mn segregation in dual-phase samples either. However, implanted Ga ions deposited during sample preparation by focused ion-beam milling are found to act as chemical markers that preferentially occupy the amorphous phase. This additional information permits more robust identification of the phases and measurement of their compositions. As a result, a weak partitioning tendency of Mn into the amorphous phase (about 2 at%) is discerned in these alloys.  相似文献   

8.
Spatial Distribution Maps (SDM) in their various forms have previously been used to identify and characterize crystallographic structure within APT reconstructions. Importantly, it has been shown that such SDM analyses can also provide the crystallographic orientation of the specimen with respect to the direction of the detector in the original experiment. In this study, we investigate the application of SDMs to the analysis of APT reconstruction of a nanocrystalline Al film. We demonstrate that significant intra-granular crystallographic information is retained in the reconstruction, even in the x-y plane perpendicular to the direction of the detector. Further, the crystallographic orientation of the grains can be characterized highly accurately not only with respect to the bulk specimen but also their misorientation with respect to neighbouring grains.  相似文献   

9.
Due to a high number density of grain boundaries acting as point defect sinks, ultrafine-grained materials are expected to be more resistant to irradiation damage. In this context, ultrafine-grained 316 austenitic stainless steel samples have been fabricated by high pressure torsion. Their behavior under ion irradiation has been studied using atom probe tomography. Results are compared with those obtained in an ion irradiated conventional coarse-grained steel. The comparison shows that the effects of irradiation are limited and that intragranular and intergranular features are smaller in the ultrafine-grained alloy. Using cluster dynamic modeling, results are interpreted by a higher annihilation of point defects at grain boundaries in the ultrafine-grained steel.  相似文献   

10.
Early stages of cluster formation in an Al-Si-Mg alloy were investigated by atom probe tomography and evaluated by a newly developed statistical method based on the nearest neighbour distributions. After solutionising and quenching, an alloy sample was naturally aged for one week. The atom probe data then measured was analysed for Mg, Si or Mg-Si clusters. For comparison specimen artificial aged with well developed precipitates was also investigated. A general approach for the analysis of density spectra was set up, which reduced the problem to the solution of an integral equation. Application of the method to the atom probe data set allowed us to detect clusters and to evaluate the atomic fractions within these clusters. This is also possible for an arbitrary number of nucleated phases. The higher-order next nearest neighbour distributions were used for the estimation of cluster sizes. Combining the density distribution method with a Monte Carlo simulation we found very small Si-Si and Mg-Mg clusters consisting of only a few atoms in the naturally aged state.  相似文献   

11.
A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 °C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 °C as the clusters enlarge during ageing.  相似文献   

12.
Copper alloys with titanium additions between 1 and 6 at% Ti emerge currently as attractive conductive materials for electrical and electronic commercial products, since they exhibit superior mechanical and electrical properties. However, their electrical conductivity is reduced owing to the residual amount of Ti solutes in the Cu solid solution (Cuss) phase. Since Cu shows only poor reactivity with hydrogen (H), while Ti exhibits high affinity to it, we were inspired by the idea that hydrogenation of Cu–Ti alloys would influence their microstructure, resulting in a significant change of their properties. In this contribution, the influence of aging under a deuterium (D2) atmosphere of Cu-1 at% Ti alloys on their microstructure is investigated to explore the effects on the electrical conductivity. The specimens were investigated by means of transmission electron microscopy (TEM), field ion microscopy (FIM), computer-aided field ion image tomography (cFIIT), and atom probe tomography (APT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号