首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种应用于6-9GHz UWB系统的低噪声CMOS射频前端设计   总被引:2,自引:2,他引:0  
周锋  高亭  兰飞  李巍  李宁  任俊彦 《半导体学报》2010,31(11):115009-5
本文介绍了一种应用于6-9 GHz超宽带系统的全集成差分CMOS射频前端电路设计。在该前端电路中应用了一种电阻负反馈形式的低噪声放大器和IQ两路合并结构的增益可变的折叠式正交混频器。芯片通过TSMC 0.13µm RF CMOS工艺流片,含ESD保护电路。经测试得该前端电路大电压增益为23~26dB,小电压增益为16~19dB;大增益下前端电路平均噪声系数为3.3-4.6dB,小增益下的带内输入三阶交调量(IIP3)为-12.6dBm。在1.2V电压下,消耗的总电流约为17mA。  相似文献   

2.
This paper presents a design of a low power CMOS ultra-wideband (UWB) low noise amplifier (LNA) using a noise canceling technique with the TSMC 0.18 μm RF CMOS process. The proposed UWB LNA employs a current-reused structure to decrease the total power consumption instead of using a cascade stage. This structure spends the same DC current for operating two transistors simultaneously. The stagger-tuning technique, which was reported to achieve gain flatness in the required frequency, was adopted to have low and high resonance frequency points over the entire bandwidth from 3.1 to 10.6 GHz. The resonance points were set in 3 GHz and 10 GHz to provide enough gain flatness and return loss. In addition, the noise canceling technique was used to cancel the dominant noise source, which is generated by the first transistor. The simulation results show a flat gain (S21>10 dB) with a good input impedance matching less than –10 dB and a minimum noise figure of 2.9 dB over the entire band. The proposed UWB LNA consumed 15.2 mW from a 1.8 V power supply.  相似文献   

3.
A full W-band Low Noise Amplifier (LNA) Module is designed and fabricated in this letter. A broadband transition is introduced in this module. The proposed transition is designed, optimized based on the results from numerical simulations. The results show that 1 dB bandwidth of the transition ranges from 61 to 117 GHz. For the purpose of verification, two transitions in back-to-back connection are measured. The results show that transmission loss is only about 0.9-1.7dB. This transition is used to interface integrated circuits to waveguide components. The characteristic of the LNA module is measured after assembly. It exhibits a broad bandwidth of 75 to 110 GHz , has a small signal gain above 21 dB. The noise figure is lower than 5dB throughout the entire W-band (below 3 dB from 89 to 95GHz) at a room temperature. The proposed LNA module exhibits potential for millimeter wave applications due to its high small signal gain, low noise, and low dc power consumption  相似文献   

4.
In this paper, a new CMOS wideband low noise amplifier (LNA) is proposed that is operated within a range of 470 MHz-3 GHz with current reuse, mirror bias and a source inductive degeneration technique. A two-stage topology is adopted to implement the LNA based on the TSMC 0.18-μm RF CMOS process. Traditional wideband LNAs suffer from a fundamental trade-off in noise figure (NF), gain and source impedance matching. Therefore, we propose a new LNA which obtains good NF and gain flatness performance by integrating two kinds of wideband matching techniques and a two-stage topology. The new LNA can also achieve a tunable gain at different power consumption conditions. The measurement results at the maximum power consumption mode show that the gain is between 11.3 and 13.6 dB, the NF is less than 2.5 dB, and the third-order intercept point (IIP3) is about −3.5 dBm. The LNA consumes maximum power at about 27 mW with a 1.8 V power supply. The core area is 0.55×0.95 mm2.  相似文献   

5.
6.
7.
The paper presents the design and characterization of a low noise amplifier (LNA) in a 0.18 μm CMOS process with a novel micromachined integrated stacked inductor. The inductor is released from the silicon substrate by a low-cost CMOS compatible dry front-side micromachining process that enables higher inductor quality factor and self-resonance frequency. The post-processed micromachined inductor is used in the matching network of a single stage cascode 4 GHz LNA to improve its RF performance. This study compares performance of the fabricated LNA prior to and after post-processing of the inductor. The measurement results show a 0.5 dB improvement in the minimum noise figure and a 1 dB increase in gain, while good input matching is maintained. These results show that the novel low-cost CMOS compatible front-side dry micromachining process reported here significantly improves performance and is very promising for System-On-Chip (SOC) applications.  相似文献   

8.
《Microelectronics Journal》2014,45(11):1463-1469
A low-power low-noise amplifier (LNA) utilized a resistive inverter configuration feedback amplifier to achieve the broadband input matching purposes. To achieve low power consumption and high gain, the proposed LNA utilizes a current-reused technique and a splitting-load inductive peaking technique of a resistive-feedback inverter for input matching. Two wideband LNAs are implemented by TSMC 0.18 μm CMOS technology. The first LNA operates at 2–6 GHz. The minimum noise figure is 3.6 dB. The amplifier provides a maximum gain (S21) of 18.5 dB while drawing 10.3 mW from a 1.5-V supply. This chip area is 1.028×0.921 mm2. The second LNA operates at 3.1–10.6 GHz. By using self-forward body bias, it can reduce supply voltage as well as save bias current. The minimum noise figure is 4.8 dB. The amplifier provides a maximum gain (S21) of 17.8 dB while drawing 9.67 mW from a 1.2-V supply. This chip area is 1.274×0.771 mm2.  相似文献   

9.
《Microelectronics Journal》2015,46(2):198-206
In this paper, a highly linear CMOS low noise amplifier (LNA) for ultra-wideband applications is presented. The proposed LNA improves both input second- and third-order intercept points (IIP2 and IIP3) by canceling the common-mode part of all intermodulation components from the output current. The proposed LNA structure creates equal common-mode currents with the opposite sign by cascading two differential pairs with a cross-connected output. These currents eliminate each other at the output and improve the linearity. Also, the proposed LNA improves the noise performance by canceling the thermal noise of the input and auxiliary transistors at the output. Detailed analysis is provided to show the effectiveness of the proposed LNA structure. Post-layout circuit level simulation results using a 90 nm RF CMOS process with Spectre-RF reveal 9.5 dB power gain, -3 dB bandwidth (BW−3dB) of 8 GHz from 2.4 GHz to 10.4 GHz, and mean IIP3 and IIP2 of +13.1 dBm and +42.8 dBm, respectively. The simulated S11 is less than −11 dB in whole frequency range while the LNA consumes 14.8 mW from a single 1.2 V power supply.  相似文献   

10.
A new low complexity ultra-wideband 3.1–10.6 GHz low noise amplifier (LNA), designed in a chartered 0.18 μm RFCMOS technology, is presented in this paper. The ultra-wideband LNA only consists of two simple amplifiers with an inter-stage inductor connected. The first stage utilizing a resistive current reuse and dual inductive degeneration techniques is used to attain a wideband input matching and low noise figure. A common source amplifier with inductive peaking technique as the second stage achieves high flat gain and wide the −3 dB bandwidth of the overall amplifier simultaneously. The implemented ultra-wideband LNA presents a maximum power gain of 15.6 dB, a high reverse isolation of −45 dB and a good input/output return losses are better than −10 dB in the frequency range of 3.1–10.6 GHz. An excellent noise figure (NF) of 2.8–4.7 dB was obtained in the required band with a power dissipation of 14.1 mW under a supply voltage of 1.5 V. An input-referred third-order intercept point (IIP3) is −7.1 dBm at 6 GHz. The chip area including testing pads is only 0.8 mm × 0.9 mm.  相似文献   

11.
针对目前X波段低噪声放大器的电路拓扑结构不易选择,故提出了一种采用微带分支线匹配结构和三级级联方式的X波段低噪声放大器(LNA)。放大器选用NEC低噪声放大管NE3210S01,利用ADS(Advanced Design System)软件设计、仿真、优化,放大器实测结果表明:在9.2 GHz~9.6 GHz频带内,噪声系数小于1.7 dB,带内增益达到33.5 dB,带内增益平坦度ΔG≤±0.3 dB,输入、输出驻波比均小于1.5。该放大器已应用于X波段接收机,效果良好,其设计方法可供工程应用参考。  相似文献   

12.
This paper presents an Ultra Wide-Band (UWB) high linear low noise amplifier. The linearity of Common Gate (CG) structure is improved based on pre-distortion technique. An auxiliary transistor is used at the input to sink the nonlinear terms of source current, resulting linearity improvement. Furthermore, an inductor is used in the gate of the main amplifying transistor, which efficiently improves gain, input matching and noise performance at higher frequencies. Detailed mathematical analysis show the effectiveness of both linearity improvement and bandwidth extension techniques. Post-layout simulation results of the proposed LNA in TSMC 0.18 µm RF-CMOS process show a gain of 13.7 dB with −3 dB bandwidth of 0.8–10.4 GHz and minimum noise figure (NF) of 3 dB. Input Third Intercept Point (IIP3) of 10.3–13 dBm is achieved which shows 8 dB improvement compared to conventional common gate structure. The core circuit occupies an area of 0.19 mm2 including bond pads, while consuming 4 mA from a 1.8-V supply.  相似文献   

13.
This paper presents two low power UWB LNAs with common source topology. The power reduction is achieved by the current-reused technique. The gain and noise enhancement of the proposed circuit is based on an output buffer which is used by a common source amplifier with shunt–shunt feedback. Chip1 is an adopted T-match input network of 50 Ω matching in the required band. Measurements show that the S11 and S22 are less than −10 dB, and the maximum amplifier gain S21 gives 9.7 dB, and the noise figure is 4.2 dB, the IIP3 is −8.5 dBm, and the power consumption is 11 mW from 1.1 V supply voltage. The input matching of chip2 is adopted from a LC high pass filter and source degenerated inductor. The output buffer with the RC-feedback topology can improve the gain, increase the IIP3, restrain the noise, improve the noise figure and decrease the DC power dissipation. Measurements show 13.2 dB of power gain, 3.33 dB of noise figure, and the IIP3 is −3.3 dBm. It consumes 9.3 mW from 1.5 V supply voltage. These two chips are implemented in a 0.18 μm TSMC CMOS process.  相似文献   

14.
This paper presents a single ended low noise amplifier (LNA) using 0.18 μm CMOS process packed and tested on a printed circuit board. The LNA is powered at 1.0 V supply and drains 0.95 mA only. The LNA provides a forward gain of 11.91 dB with a noise figure of only 2.41 dB operating in the 0.9 GHz band. The measured value of IIP3 is 0.7 dBm and of P1dB is −12 dBm. Zhang Liang is currently with Cyrips, Singapore. Ram Singh Rana was born in Delhi (India). Having primary education in Bijepur, Dwarahat(India), he received the B.Tech. (hons.) degree in Computer Engineering from G.B. Pant University, Pantnagar, India in 1988 and the Ph.D degree from the Indian Institute of Techonology (IIT), Delhi, India in 1996. He worked for his Ph.D in the Centre for Applied Research in Electronics, IIT Delhi in close interaction with the Semiconductor Complex Limited, Mohali, India. He was with ESPL, Mohali(India) in 1988 for a very short period and then served IIT Delhi as Senior Research Associate (88-90) and Senior Scientific Officer (90-95) where his main contributions were on CMOS analog IC design in subthreshold operation. He was a Lecturer in the Kumaon Engg. College, Dwarahat (India) before serving the IIT Roorkee (Formerly Univ. of Roorkee) in 1998 as assistant Professor. In 1999, he was a Manager (Engineering), Semiconductor Product Sector of the Motorola, Noida, India. Since joining the Institute of Microelectronics, Singapore in 2000, he worked mostly on RFICs, Fractional-N PLLs, ADCs. During 2001-2004, he worked there as IC Design Research and Training Program Manager. Currently, he is serving the institute as Senior Research Engineer in CMOS IC design (below 1V) for biomedical and bio-sensors. His current interests include design and consultancy for CMOS ICs/systems for the biomedical and high speed communication applications. Dr. Rana received Young Teacher Career Award from the All India Council for Technical Education in 1997. He was an Adjunct Asstt. Professor with the National University of Singapore (NUS), Singapore in 2004. He is sole inventor of two US granted patents and has filed several other patents. He has authored/co-authored about 40 publications. He has been reviewer for several IEEE journals and conference papers. Dr Rana is a senior member of IEEE and a member of Graduate Program in BioEngineering, NUS Singapore. He has chaired /co-chaired sessions in many international conferences. Zhang Liang was born in China in June 1978. He received the Bachelor degree and the Master degree in Electrical Engineering from the Xi’an JiaoTong University, Xi’an, China, in 2000 and 2003 respectively. Since 2003, he has been a postgraduate student in the Electrical and Computer Engineering department, National University of Singapore(NUS), Singapore and has successfully completed M.Engg degree program of the NUS. He is currently working on RFICs as a design engineer in Cyrips, Singapore. His design and research interests include integrated circuit design for communications. He has authored/co-authored several publications of international standard. Hari K Garg obtained his BTech degree in EE from IITDelhi in 1981. Subsequently, he obtained his MEng & PhD degrees from Concordia University in 1983 & 1985, and MBA from Syracuse University in 1985. He was a faculty member at Syracuse University from 1985 till 1995. He has been with the National University of Singapore since 1995 till present with the exception of 1998-1999 when he was with Philips. Hari’s research interests are in the area of digital signal/image processing, wireless communications, coding theory and digital watermarking. He has published extensively on these and related topics. He is also founder of several companies in the space of mobile telephony. In his spare time, Hari enjoys singing and a good game of Squash.  相似文献   

15.
In this paper, a low power differential inductor-less Common Gate Low Noise Amplifier (CG-LNA) is presented for Wireless Sensor Network (WSN) applications. New Shunt feedback is employed with noise cancellation and Dual Capacitive Cross Coupling (DCCC) techniques to improve the performance of common gate structures in terms of gain, Noise Figure (NF) and power consumption. The shunt feedback path boosts the input conductance of the LNA in current reuse scheme. Both shunt feedback and current reuse bring power dissipation down considerably. In addition, the positive feedback is utilized to cancel the thermal noise of the input transistor. The proposed LNA is designed and simulated in 0.18 µm TSMC CMOS technology. Post layout Simulation results indicate a voltage gain of 16.5 dB with −3 dB bandwidth of 100 MHz–3 GHz. Also third order Input Intercept Point (IIP3) is equal to + 1 dBm. The minimum NF is 2.8 dB and the value of NF at 2.4 GHz is 2.9 dB. S11 is better than −13 dB in whole frequency range. The core LNA consumes 985 µW from a 1.8 V DC voltage supply.  相似文献   

16.
17.
In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 ​dB, input return loss of less than −11 ​dB and noise figure range of 2.3–4.4 ​dB from 1 ​GHz up to 8 ​GHz. It consumes 5.4 ​mW from a 1.2 ​V power supply. The achieved IIP3 range for the proposed LNA is 0 ​dBm up to +2.7 ​dBm. The proposed LNA occupies 0.45 ​mm2 in 0.18-μm CMOS technology.  相似文献   

18.
A low noise amplifier with automatically Q-tuned notch filter is proposed. The automatic Q tuning is achieved by an analog-digital mixed circuit, in which the successive approximation register algorithm is used to search for the appropriate current value through the resonator so that the losses of the resonator are perfectly cancelled to get a deep notch.  相似文献   

19.
In this paper a new notch filter topology has firstly been described. In order to improve the input match as well as enhance the gain on the operating frequency of 20.5 GHz, extra capacitor has firstly been added in the passive base-collector notch filter forming a new scheme, eliminating the operating-frequency (op) input mismatch in formal base-collector notch filters. EM simulations have shown that the LNA obtained 14.1 dB gain at 20.5 GHz and high image-rejection ratio (IRR) of 33.5 dB at image frequency of 15 GHz, and S11 of -15 dB was obtained compared to −8 dB without notch filter at operating frequency, NF was below 5 dB at gain peak frequency, power consumption was 18 mW at 3 V voltage supply, and IIP3 was 3.43 dBm ensuring a high linearity in SiGe bipolar process.  相似文献   

20.
A wideband inductorless low noise amplifier for digital TV tuner applications is presented. The proposed LNA scheme uses a composite NMOS/PMOS cross-coupled transistor pair to provide partial cancellation of noise generated by the input transistors. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed LNA achieves 12.2-15.2 dB voltage gain from 300 to 900 MHz, the noise figure is below 3.1 dB and has a minimum value of 2.3 dB, and the best input-referred 1-dB compression point(IP1dB) is - 17 dBm at 900 MHz. The core consumes 7 mA current with a supply voltage of 1.8 V and occupies an area of 0.5×0.35 mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号