首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported,to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions.This novel structure offers low barrier height at the source and offers high ON-state current.The ION/IoFF of ISE-CGAA-SB-MOS-FET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade).However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate,dual metal gate,single metal gate with ISE,and dual metal gate with ISE has been presented.The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design.The numerical simulation is performed using the ATLAS-3D device simulator.  相似文献   

2.
This paper presents an in-depth analysis of junctionless double gate vertical slit FET (JLDG VeSFET) device under process variability. It has been observed that junctionless FETs (JLDG VeSFET) are significantly less sensitive to many process parameter variations due to their inherent device structure and geometric properties. Sensitivity analysis reveals that the slit width, oxide thickness, radius of the device, gate length and channel doping concentration imperceptibly affect the device performance of JLDG VeSFET in terms of variation in threshold voltage, on current, off current and subthreshold slope (Ssub) as compared to its junction based counterpart i.e. MOSFET, because various short channel effects are well controlled in this device. The maximum variation in off current for JLDG VeSFET due to variation in different devices parameters is 5.6% whereas this variation is 38.8% for the MOS junction based device. However, variation in doping concentration in the channel region displays a small deviation in the threshold voltage and on current characteristics of the MOSFET device as compared to JL DG VeSFET.  相似文献   

3.
《Microelectronics Journal》2015,46(8):731-739
In this paper, for the first time, we have analyzed DC characteristics and analog/RF performances for nanowire quadruple-gate (QuaG) gate-all-around (GAA) metal oxide semiconductor field effect transistor (MOSFET), using isomorphic polynomial function for potential distribution. The QuaG GAA MOSFET not only suppresses the short channel effects (SCEs) and offer ideal subthreshold slope (SS), but also is a good candidate for analog/RF device due to its high transconductance (gm) and high cutoff frequency (fT). Therefore, this work would be beneficial for a new generation of RF circuits and systems in a broad range of applications and operating frequencies covering RF spectrum. For this, the developed model is based on the solution of 3D Laplace and Poisson׳s equations for subthreshold and strong inversion regions respectively. The developed potential model has been used to formulate a new model for total gate, drain and source charge. Further, the expression for different capacitance for investigating RF performance is obtained from the developed model. Finally, the developed device electrostatics for QuaG GAA MOSFET have been used for the analysis of analog/RF performance. Different capacitances and analog/RF figures of merit are extracted from small signal frequency (1 MHz) ac device simulation. Whereas technology computer-aided design (TCAD) simulations have been performed by 3D ATLAS, Silvaco International.  相似文献   

4.
利用三维数值仿真工具,对双栅无结型场效应晶体管进行了数值模拟,研究了沟道掺杂浓度深度分布对晶体管性能的影响,并对比分析了当沟道长度缩小到10nm及以下时器件的电学特性。仿真结果表明,相比于沟道为均匀掺杂分布的器件,具有中间低的沟道掺杂深度分布的双栅无结型场效应晶体管具有更优的开关电流比、漏致势垒降低、亚阈值斜率等电学性能和短沟道特性。  相似文献   

5.
A junctionless transistor (JLT) having high doping concentration of the channel, suffers from the threshold voltage roll-off because of random dopant fluctuation (RDF) effect. RDF has been minimized by using charge plasma based JLT. Charge plasma is same as a workfunction engineering in which work function of the electrode is varied to create hole/electron plasma and induce doping in the intrinsic silicon. N-type doping is induced at the source and drain side due to difference of workfunction of silicon wafer. In this paper, charge plasma based junctionless MOSFET on selective buried oxide (SELBOX-CPJLT) is proposed. This approach is used to reduce the self-heating effect presented in SOI-based devices. The proposed device shows better thermal efficiency as compared to SELBOX-JLT. 2D-Atlas simulation revealed the electrostatics and analog performance of both the devices. The SELBOX-CPJLT exhibits better electrostatic performance as compared to SELBOX-JLT for the same channel length. The analog performance such as intrinsic gain, transconductance generation factor, output conductance and unity gain cut-off frequency are extracted from small signal ac analysis at 1 MHz and compared to SELBOX-JLT. The analysis of the thermal circuit model of SELBOX structure is also performed.  相似文献   

6.
As MOSFET scaling pushes channel lengths below 65 nm, device designs utilizing fully depleted silicon-on-insulator (SOI) technology and employing two or more gates are becoming increasingly attractive as a means to counteract short channel effects. The presence of multiple gates enhances the total control that the gate exercises on the channel region and the SOI technology allows for a significant reduction in the junction capacitance. In combination, these two factors result in devices that exhibit superior characteristics to the conventional planar MOSFET. This paper compares the variation in the switching performance of the three leading multi-gate MOSFET designs, namely the FinFET, TriGate, and Omega-gate. A 3-dimensional, commercial numerical device simulator is employed to investigate the device characteristics using a common set of material parameters, device physics models, and performance metrics. Examined initially are the short-channel effects including the subthreshold slope (S) and the drain-induced barrier lowering as the gate length is scaled down to 20 nm. Subsequently investigated and compared are the effects of scaling of the fin’s body width and height, the oxide thickness, and channel doping. The investigation reveals that the Omega-gate MOSFET shows the best scaling characteristics at a particular device dimension with the TriGate device showing the least variation in characteristics as device dimensions vary.  相似文献   

7.
Impact ionization MOSFET (IMOS) is a device that enables to reach subthreshold slopes as small as 5 mV/dec. This device has an asymmetric doping profile, and only a fraction of the channel is covered by the gate. In the first part of this paper, the purpose is to investigate the impact of some geometrical parameters on the IMOS performance: the gate length, the intrinsic length, and the Si film thickness. This study simulates a p-IMOS device on silicon-on-insulator using ATLAS. It is pointed out that the increase of the ratio$L_G/L_ IN$allows a drop of the bias voltage, but involves a degradation of the subthreshold slope. A thin Si film improves the overall device performance. In the second part, the performance of an IMOS-based inverter is investigated, and for the first time an IMOS ring oscillator is simulated.  相似文献   

8.
In this paper, we present a novel type of channel doping engineering, using a graded doping distribution, that improves the electrical and thermal performance of silicon-on-insulator (SOI) metal–oxide–semiconductor field effect transistors (MOSFETs), according to simulations that we have performed. The results obtained include a reduction in the self-heating effect, a reduction in leakage currents due to the suppression of short-channel effects (SCEs), and a reduction in hot-carrier degradation. We term the proposed structure a modified-channel-doping SOI (MCD-SOI) MOSFET. The main reason for the reduction in the self-heating effect is the use of a lower doping density near the drain region in comparison with conventional SOI MOSFETs with a uniform doping distribution. The most significant reason for the leakage current reduction in the MCD-SOI structure is the high potential barrier near the source region in the weak inversion state. The SCE factors, including the drain-induced barrier lowering, subthreshold swing, and threshold voltage roll-off, are improved. A highly reliable structure is achieved owing to the lower doping density near the drain region, which reduces the peak electric field and the electron temperature.  相似文献   

9.
In the present paper, a comprehensive drain current model incorporating various effects such as drain-induced barrier lowering (DIBL), channel length modulation and impact ionization has been developed for graded channel cylindrical/surrounding gate MOSFET (GC CGT/SGT) and the expressions for transconductance and drain conductance have been obtained. It is shown that GC design leads to drain current enhancement, reduced output conductance and improved breakdown voltage. The effectiveness of GC design was examined by comparing uniformly doped (UD) devices with GC devices of various L1/L2 ratios and doping concentrations and it was found that GC devices offer superior characteristics as compared to the UD devices. The results so obtained have been compared with those obtained from 3D device simulator ATLAS and are found to be in good agreement.  相似文献   

10.
The potential variation in the channel obtained from analytical solution of three-dimensional (3-D) Poisson's equation is used to calculate the subthreshold current and threshold voltage of fin field-effect transistors with doped and undoped channels. The accuracy of the model has been verified by the data from 3-D numerical device simulator. The variation of subthreshold slope and threshold voltage with device geometry and doping concentration in the channel has been studied.  相似文献   

11.
A new methodology is proposed to extract the nonuniform channel doping profile of enhancement mode p-MOSFETs with counter implantation, based on the relationship between device threshold voltage and substrate bias. A selfconsistent mathematical analysis is developed to calculate the threshold voltage and the surface potential of counter-implanted long-channel p-MOSFET at the onset of heavy inversion. Comparisons between analytic calculation and two-dimensional (2-D) numerical analysis have been made and the accuracy of the developed analytic model has been verified. Based on the developed analytic model, an automated extraction technique has been successfully implemented to extract the channel doping profile. With the aid of a 2-D numerical simulator, the subthreshold current can be obtained by the extracted channel doping profile. Good agreements have been found with measured subthreshold characteristics for both long- and short-channel devices. This new extraction methodology can be used for precise process monitoring and device optimization purposes  相似文献   

12.
In the last few years the Tunnel-FET has become one of the promising devices to be the successor of the MOSFET due to its CMOS compatibility and steep subthreshold slopes (S) below 60 mV/dec. Hetero-junctions at the channel interface are used to improve the on-state current of the device. In this paper a 2D physics-based analytical model for hetero-junction Tunnel-FETs is introduced. It predicts a 2D band-to-band tunneling probability calculation through Wentzel–Kramers–Brillouin approximation (WKB) based on a 2D solution of electrostatics with respect to the device structure and carrier distributions in the device. These results are embedded in a model for the device current. The solutions of the potential, electrical field and the current transfer characteristics of the model are in good agreement with simulation data from the finite-element-method (FEM) simulator TCAD Sentaurus.  相似文献   

13.
辛艳辉  段美霞 《电子学报》2019,47(11):2432-2437
提出了一种非对称双栅应变硅HALO掺杂沟道金属氧化物半导体场效应管结构.该器件前栅和背栅由两种不同功函数的金属构成,沟道为应变硅HALO掺杂沟道,靠近源区为低掺杂区域,靠近漏区为高掺杂区域.采用分区的抛物线电势近似法和通用边界条件求解二维泊松方程,分别求解了前背栅表面势、前背栅表面电场及前背栅阈值电压,建立了双栅器件的表面势、表面电场和阈值电压解析模型.详细讨论了物理参数对解析模型的影响.研究结果表明,该器件能够很好的抑制短沟道效应、热载流子效应和漏致势垒降低效应.模型解析结果与DESSIS仿真结果吻合较好,证明了该模型的正确性.  相似文献   

14.
A generalized threshold voltage model based on two-dimensional Poisson analysis has been developed for SOI/SON MOSFETs. Different short channel field effects, such as fringing fields, junction-induced lateral fields and substrate fields, are carefully investigated, and the related drain-induced barrier-lowering effects are incorporated in the analytical threshold voltage model. Through analytical model-based simulation, the threshold voltage roll-off and subthreshold slope for both structures are compared for different operational and structural parameter variations. Results of analytical simulation are compared with the results of the ATLAS 2D physics-based simulator for verification of the analytical model. The performance of an SON MOSFET is found to be significantly different from a conventional SOI MOSFET. The short channel effects are found to be reduced in an SON, thereby resulting in a lower threshold voltage roll-off and a smaller subthreshold slope. This type of analysis is quite useful to figure out the performance improvement of SON over SOI structures for next generation short channel MOS devices.  相似文献   

15.
Scaling the Si MOSFET: from bulk to SOI to bulk   总被引:6,自引:0,他引:6  
Scaling the Si MOSFET is reconsidered. Requirements on subthreshold leakage control force conventional scaling to use high doping as the device dimension penetrates into the deep-submicrometer regime, leading to an undesirably large junction capacitance and degraded mobility. By studying the scaling of fully depleted SOI devices, the important concept of controlling horizontal leakage through vertical structures is highlighted. Several structural variations of conventional SOI structures are discussed in terms of a natural length scale to guide the design. The concept of vertical doping engineering can also be realized in bulk Si to obtain good subthreshold characteristics without large junction capacitance or heavy channel doping  相似文献   

16.
In this paper, a fundamental investigation on short-channel effects (SCEs) in 4H-SiC MOSFETs is given. Planar MOSFETs with various channel lengths have been fabricated on p-type 4H-SiC (0001), (0001) and (1120) faces. In the fabricated MOSFETs, SCEs such as punchthrough behavior, decrease of threshold voltage, deterioration of subthreshold characteristics, and saturation of transconductance occur by reducing channel length. The critical channel lengths below which SCEs occur are analyzed as a function of p-body doping and oxide thickness by using device simulation. The critical channel lengths obtained from the device simulation is in good agreement with the empirical relationship for Si MOSFETs. The critical channel lengths in the fabricated SiC MOSFETs are slightly longer than simulation results. The dependence of crystal face orientations on SCEs is hardly observed. Impacts of interface charge on the appearance of SCEs are discussed.  相似文献   

17.
CMOS (Complementary Metal-oxide-semiconductor) based high-speed applications in the sub-14 nm technology node using InGaAs Fin field-effect-transistors (FinFETs) confront with inevitable effect in form of interface traps upon integration of dielectric layer with InGaAs material. In this work, we have explored the impact of the traps on short channel effects (SCEs) and a technique of abating the effect of interface traps by introducing In0.52Al0.48As cap layer. Proposed work reforms the device by varying the cap layer thickness (Tcap), doping concentrations of cap layer and underlap region. The effect of traps on intrinsic delay, work function variation and SCEs was investigated to assess the trend on devices with In0.52Al0.48As cap layer. It has been observed that introduction of Tcap improves SCEs and helps to mitigate the effect of interface traps. SCEs can be additionally diminished by presenting underlap fin length at the cost of higher delay. The experimental results show the value of subthreshold swing = 149.54 mV/decade, drain-induced barrier lowering = 38.5 mV V?1 and delay = 1.1 ps for Tcap = 4 nm without underlap fin length structure for traps concentration of 1012 cm?2eV?1. Thus, significant improvement has been seen in SCEs and delay performance in FinFET structure with cap layer.  相似文献   

18.
In this paper, we have introduced an analytical subthreshold and strong inversion 3D potential model for rectangular gate (RecG) gate-all-around (GAA) MOSFET. The subthreshold and strong inversion potential distribution in channel region of a RecG MOSFET is obtained respectively by solving 3D Laplace and 3D Poisson equations. The assumed parabolic potential distribution along the z-axis in channel direction is appropriately matched with 3D device simulator after consideration of z-depended characteristic length in subthreshold region. For accurate estimation of short channel effects (SCE), the electrostatics near source and drain is corrected. The precise gate-to-gate potential distribution is obtained after consideration of higher order term in assumed parabolic potential profile. The model compares well with numerical data obtained from the 3D ATLAS as a device simulator and deckbuild as an interactive runtime of Silvaco Inc.  相似文献   

19.
The Tunnel Source (PNPN) n-MOSFET: A Novel High Performance Transistor   总被引:2,自引:0,他引:2  
As MOSFET is scaled below 90 nm, many daunting challenges arise. Short-channel effects (SCEs; drain-induced barrier lowering and VTHmiddotrolloff), off-state leakage, parasitic capacitance, and resistance severely limit the performance of these transistors. New device innovations are essential to overcome these difficulties. In this paper, we propose the concept of a novel tunnel source (PNPN) n-MOSFET based on the principle of band-to- band tunneling. It is found that the PNPN n-MOSFET has the potential of steep subthreshold swing and improved Ion in addition to immunities against SCEs. Therefore, such a PNPN n-MOSFET can overcome the ever-degrading on-off characteristics of the deeply scaled conventional MOSFET. The design of the PNPN n-MOSFET was extensively examined using simulations. Devices with source-side tunneling junctions were fabricated on bulk substrates using spike anneal, and the experimental data is presented.  相似文献   

20.
In this paper, a novel design of the double doping polysilicon gate MOSFET device is proposed, which has a p+ buried layer near the drain, and relatively thicker D-gate oxide film (DDPGPD MOSFET). The detailed fabrication process for this device is designed using process simulation software called TSUPREM, and the device structure plan is further used in MEDICI simulation. The effect of gate doping concentration is investigated, and it is found that the device Vth is only influenced by the S-gate; furthermore, the device can get a larger driving current by increasing the doping concentration of D-gate. Compared to other conventional DDPG MOSFETs, the short-channel effects (SCEs) including the off-state current, the gate leakage current and the drain induced barrier lowering effect (DIBL) can be effectively suppressed by the p+ buried layer and thicker D-gate oxide film. Additionally, the other parameters of the device such as the driving current are not seriously affected by the proposed design modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号