首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Error propagation analysis is one of the main objectives of fault injection experiments. This analysis helps designers to detect design mistakes and to provide effective mechanisms for fault tolerant systems. However, error propagation analysis requires that the chosen fault injection technique provides a high degree of observability (i.e., the ability to observe the internal values and events of a circuit after a fault is injected). Simulation-based fault injection provides a high observability adequate for error propagation analysis. However, the performance of the simulation-based technique is inadequate to handle today’s hardware complexity. As an alternative, FPGA-based fault injection can be used to accelerate the fault injection experiments, but the communication time needed for observing the circuit behavior from outside of the FPGA imposes severe limitations on the observability. In this paper, an observation technique for FPGA-based fault injection is proposed which significantly reduces the communication time as compared with previous scan-based observation techniques. Furthermore, this paper describes a SEU-fault injection technique based on a chain of parallel registers which reduces the time needed for injecting SEU faults as compared to the previous scan-based fault-injection techniques. As a case study, a 32-bit pipelined processor has been used in the fault injection experiments. The experimental results show that when a high degree of observability is required (e.g., error propagation analysis), the proposed fault injection technique is over 1166 times faster than simulation-based fault injection, whereas the traditional scan-based technique can achieve only a speedup of about 2–3 – which means that the proposed technique is about 500 times faster than the traditional scan-based technique. Such results are supported by theoretical performance analysis. This speed increase has been achieved without excessive increase in FPGA resource overhead, for example, the FPGA overhead of the proposed technique is only 2  3% higher than that of the traditional scan-based technique.  相似文献   

2.
Due to the increased complexity of modern digital circuits, the use of simulation-based soft error detection methods has become cumbersome and very time-consuming. FPGA-based emulation provides an attractive alternative, as it can not only provide faster speed, but also handle highly complex circuits. In this work, a novel FPGA-based soft error detection technique is proposed, which enables detection of soft errors resulting from voltage pulses of different magnitudes induced by single-event transients (SETs). The paper analyzes the effect of transient injection location on soft error rate (SER) and applies the idea of transient equivalence to minimize resource overhead as well as speed-up emulation process. Switch-level implementations of ISCAS’85 benchmarks are designed using gate-level structures and experimental results are reported. The results show that an application of transient equivalence results in an emulation speed-up of 2.875 and reduces the memory utilization by 65%. An average soft error rate (SER) of 0.7-0.8 was achieved using the proposed strength-based detection with drain as transient injection location, showing that voltage pulses of magnitude smaller than logic threshold can eventually result in soft errors. Furthermore, the presented emulation-based soft error detection technique achieved significant speed-up of the order of 106 compared to a customized simulation-based method.  相似文献   

3.
Soft error modeling and remediation techniques in ASIC designs   总被引:1,自引:0,他引:1  
Soft errors due to cosmic radiations are the main reliability threat during lifetime operation of digital systems. Fast and accurate estimation of soft error rate (SER) is essential in obtaining the reliability parameters of a digital system in order to balance reliability, performance, and cost of the system. Previous techniques for SER estimation are mainly based on fault injection and random simulations. In this paper, we present an analytical SER modeling technique for ASIC designs that can significantly reduce SER estimation time while achieving very high accuracy. This technique can be used for both combinational and sequential circuits. We also present an approach to obtain uncertainty bounds on estimated error propagation probability (EPP) values used in our SER modeling framework. Comparison of this method with the Monte-Carlo fault injection and simulation approach confirms the accuracy and speed-up of the presented technique for both the computed EPP values and uncertainty bounds.Based on our SER estimation framework, we also present efficient soft error hardening techniques based on selective gate resizing to maximize soft error suppression for the entire logic-level design while minimizing area and delay penalties. Experimental results confirm that these techniques are able to significantly reduce soft error rate with modest area and delay overhead.  相似文献   

4.
Technology scaling results in the propagation-induced pulse broadening and quenching (PIPBQ) effect become more noticeable. In order to effectively evaluate the soft error rate for combinational logic circuits, a soft error rate analysis approach considering the PIPBQ effect is proposed. As different original pulse propagating through logic gate cells, pulse broadening and quenching are measured by HSPICE. After that, electrical effect look-up tables (EELUTs) for logic gate cells are created to evaluate the PIPBQ effect. Sensitized paths are accurately retrieved by the proposed re-convergence aware sensitized path search algorithm. Further, by propagating pulses on these paths to simulate fault injection, the PIPBQ effect on these paths can be quantified by EELUTs. As a result, the soft error rate of circuits can be effectively computed by the proposed technique. Simulation results verify the soft error rate improvement comparing with the PIPBQ-not-aware method.  相似文献   

5.
FPGA-based emulation of permanent faults in ASICs can considerably improve the fault simulation time compared to traditional software-based approaches. Moreover, a hardware-based solution provides realistic behavior during fault emulation which is often required in safety-critical systems' validation. Previous emulation approaches not only suffers from considerable area (for instrumentation) and reconfiguration (for fault injection) overheads but also provides limited coverage of the target faults (and fault sites). The latter is due to difficulties in establishing a fault model equivalence when the ASIC structural netlist is passed through the design automation phases of an FPGA. This paper presents a novel approach for fast emulation of permanent faults in ASICs on state-of-the-art dynamically reconfigurable SRAM-based FPGAs while achieving fault model equivalence. Our proposed approach leverages localized run-time in-place Look Up Table (LUT) reconfigurations to avoid the time-consuming bitstream generation process for every ASIC fault. Moreover, the speed of fault injection is enhanced by direct LUT configuration data modification inside a bitstream frame. This results in 17 and 4 times improvements in fault injection speeds over vendor-provided LUT modification libraries and existing partial bitstream based approaches respectively. However, this improvement is achieved at an average 1.2 and 1.1 times degradation in area and delay metrics for the considered mapped circuits which is affordable considering the benefits in terms of the emulation speed.  相似文献   

6.
Modern nanometer circuits have become more prone to soft errors necessitating faster and more reliable error detection techniques. Simulation-based soft error detection has been popular but is limited by its inability to handle complex circuits and high run-time. FPGA-based soft error detection methods can be effectively used to overcome the speed limitation of simulation as well as handle circuits with much higher complexity. The paper presents a novel strength-based soft error emulation method targeting soft errors caused by transient pulses of magnitude less than logic threshold. The impact of transient injection location on soft error coverage is analyzed and the idea of using drain of a transistor as transient injection location is presented. Furthermore, the concept of transient equivalence is applied to minimize resource overhead as well as speed-up soft error detection process. Advanced switch-level models are designed using gate-level structure and used to implement switch-level equivalents of ISCAS’85 benchmarks. The experimental results reported for ISCAS’85 benchmarks show that an average soft error coverage of 0.7-0.8 was achieved using the proposed strength-based detection with drain as transient injection location. The application of transient equivalence resulted in speed-up of emulation by 2.875 and reduced the memory utilization by 65%. The emulation-based soft error detection achieved significant speed-up of the order of 106 as compared to a customized simulation-based method.  相似文献   

7.
Soft errors due to cosmic particles are a growing reliability threat for VLSI systems. The vulnerability of FPGA-based designs to soft errors is higher than ASIC implementations since the majority of chip real estate is dedicated to memory bits, configuration bits, and user bits. Moreover, Single Event Upsets (SEUs) in the configuration bits of SRAM-based FPGAs result in permanent errors in the mapped design.FPGAs are widely used in the implementation of high performance information systems. Since the reliability requirements of these high performance information sub-systems are very stringent, the reliability of the FPGA chips used in the design of such systems plays a critical role in the overall system reliability. In this paper, we compare and validate the soft error rate of FPGA-based designs used in the Logical Unit Module board of a commercial information system with the field error rates obtained from actual field failure data. This comparison confirms that our analytical tool is very accurate (there is an 81% overlap in FIT rate range obtained with our analytical modeling framework and the field failure data studied). It can be used for identifying vulnerable modules within the FPGA for cost-effective reliability improvement.  相似文献   

8.
This paper proposes the use of an FPGA-based fault injection technique, AMUSE, to study the effect of malicious attacks on cryptographic circuits. Originally, AMUSE was devised to analyze the soft error effects (SEU and SET) in digital circuits. However, many of the fault-based attacks used in cryptanalysis produce faults that can be modeled as bit-flip in memory elements or transient pulses in combinational logic, as in faults due to radiation effects. Experimental results provide information that allows the cryptographic circuit designer to detect the weakest areas in order to implement countermeasures at design stage.  相似文献   

9.
The shrinking feature sizes make transistors increasingly susceptible to soft errors, which can severely degrade the systems’ RAS (Reliability, Availability, and Serviceability). The tough challenge results from not only increasing SER (soft error rate) of storage cells, but also the increasing susceptibility of combinational logics to soft errors. How to efficiently detect soft errors becomes the primary problem in the Backward Error Recovery (BER) schemes that are cost-effective in soft error tolerance. This paper presents a soft error detection scheme, AUDITOR, for flip-flop based pipelines. The AUDITOR copes with both types of soft errors—single event upset (SEU) and single event transient (SET). We propose a “local-audit” fault detection mechanism, by which each pipeline stage is verified independently and the verifying result registers with a dedicated “audit” bit (V-bit). All the V-bits are distributed across the whole pipeline and synergically monitor the pipeline execution. To relax the constraint of SET detection capability imposed by the inherent fully synchronous operation mode in flip-flop based pipelines, we firstly propose using path-compensation technique to address this constraint. Furthermore, a reuse-based design paradigm is employed to reduce the implementation complexity and area overhead. The AUDITOR possesses robust detection capability and short detection latency, at the expense of about 29 % and 50 % increase in area and power consumption, respectively.  相似文献   

10.
随着新型电子器件越来越多地被机载航电设备所采用,单粒子翻转(Single Event Upset, SEU)故障已经成为影响航空飞行安全的重大隐患。首先,针对由于单粒子翻转故障的随机性,该文对不同时刻发生的单粒子翻转故障引入了多时钟控制,构建了SEU故障注入测试系统。然后模拟真实情况下单粒子效应引发的多时间点故障,研究了单粒子效应对基于FPGA构成的时序电路的影响,并在线统计了被测模块的失效数据和失效率。实验结果表明,对于基于FPGA构建容错电路,采用多时钟沿三模冗余(Triple Modular Redundancy, TMR) 加固技术可比传统TMR技术提高约1.86倍的抗SEU性能;该多时钟SEU故障注入测试系统可以快速、准确、低成本地实现单粒子翻转故障测试,从而验证了SEU加固技术的有效性。  相似文献   

11.
Soft errors, due to cosmic radiations, are one of the major challenges for reliable VLSI designs. In this paper, we present a symbolic framework to model soft errors in both synchronous and asynchronous designs. The proposed methodology utilizes Multiway Decision Graphs (MDGs) and glitch-propagation sets (GP sets) to obtain soft error rate (SER) estimation at gate level. This work helps mitigate design for testability (DFT) issues in relation to identifying the controllable and the observable circuit nodes, when the circuit is subject to soft errors. Also, this methodology allows designers to apply radiation tolerance techniques on reduced sets of internal nodes. To demonstrate the effectiveness of our technique, several ISCAS89 sequential and combinational benchmark circuits, and multiple asynchronous handshake circuits have been analyzed. Results indicate that the proposed technique is on average 4.29 times faster than the best contemporary state-of-the-art techniques. The proposed technique is capable to exhaustively identify soft error glitch propagation paths, which are then used to estimate the SER. To the best of our knowledge, this is the first time that a decision diagram based soft error identification approach is proposed for asynchronous circuits.  相似文献   

12.
Radiation-induced soft errors are the major reliability threat for digital VLSI systems. In particular, field-programmable gate-array (FPGA)-based designs are more susceptible to soft errors compared to application-specific integrated circuit implementations, since soft errors in configuration bits of FPGAs result in permanent errors in the mapped design. In this paper, we present an analytical approach to estimate the soft error rate of designs mapped into FPGAs. Experimental results show that this technique is orders of magnitude faster than the fault injection method while more than 96% accurate. We also present a highly reliable and low-cost soft error mitigation technique which can significantly improve the availability of FPGA-mapped designs. Experimental results show that, using this technique, the availability of an FPGA mapped design can be increased to more than 99.99%.  相似文献   

13.
Sedaghat  R. 《Electronics letters》2005,41(14):790-792
In past years various approaches to hardware-based fault injection using FPGA-based systems have been presented. Owing to the generation of additional faulty functions the mapping and a routable placement of the circuit into the FPGA are difficult to achieve. A technique is presented for estimating the routability, which guarantees the routability of the faulty circuit in the FPGA.  相似文献   

14.
15.
In VLSIs, soft errors resulting from radiation-induced transient pulses frequently occur. In recent high-density and low-power VLSIs, the operation of systems is seriously affected by not only soft errors occurring on memory systems and the latches of logic circuits but also those occurring on the combinational parts of logic circuits. The existing tolerant methods for soft errors on the combinational parts do not provide enough high tolerant capability with small performance penalty. This paper proposes a class of soft error masking circuits by using a Schmitt trigger circuit and a pass transistor. The paper also presents a construction of soft error masking latches (SEM-latches) capable of masking transient pulses occurring on combinational circuits. Moreover, simulation results show that the proposed method has higher soft error tolerant capability than the existing methods. For supply voltage V DD ?=?3.3 V, the proposed method is capable of masking transient pulses of magnitude 4.0 V or less.  相似文献   

16.
Due to shrinking feature size and higher transistor count in a single chip in modern fabrication technologies, power consumption and soft error reliability have become two critical challenges which chip designers are facing in new silicon integrated circuits. Recent studies have shown that these issues have compromising effects on each other. Besides, power consumption and reliability significantly vary across workloads and among pieces of a single application which can be exploited to design adaptive runtime fault tolerant and low power systems. These attractions have been exploited in prior studies to design online reconfigurable fault tolerant systems with power management schemes. However, those attempts are driven by complicated simulations and hardly deliver a sense of direction to the designers. To achieve maximum efficiency in terms of power, performance, and reliability in dynamic scaling of voltage and frequency, it is critical to have a simple and accurate reliability model which estimates the value of fault rate considering supply voltage and operating frequency of a circuit. In this paper, we propose an accurate formula for analytic modeling of the soft error rate of a system which can be used to precisely track the reliability of the system under dynamic voltage and frequency adjustments. The experimental results of this paper prove that our proposed model offers precise estimates of reliability in accordance with the results of accurate soft error rate (SER) estimation algorithm for ISCAS85’s benchmark circuits.  相似文献   

17.
18.
In this paper we describe an FPGA-based approach to speed-up fault injection campaigns for the evaluation of the fault-tolerance of VLSI circuits. Suitable techniques are proposed, allowing emulating the effects of faults and observing faulty behavior. The proposed approach combines the efficiency of hardware-based techniques, and the flexibility of simulation-based techniques. Experimental results are provided showing that significant speed-up figures can be achieved with respect to state-of-the-art simulation-based fault injection techniques.  相似文献   

19.
《Microelectronics Reliability》2014,54(11):2629-2640
With the increasing threat of soft errors induced bits upset, Network on Chip (NoC) as the communication infrastructure in many-core systems has been proven a reliability bottleneck in a fault tolerant parallel system. The often-used metric Architecture Vulnerability Factor (AVF), measures the architecture-level soft error impacts to compromise the design cost of fault tolerant schemes and reliability well. As a complementary of existing estimation methods about standard IP like processor and Cache, this work aims at an accelerated fault injection methodology for the fine-grain AVF assessment in NoC via two components: (1) modeling the complex fault patterns of both Multi-Cell Upsets (MCU) and Single Bit Upset (SBU) in the standard Fault Injection (FI) method; (2) accelerating the estimation via classifying and exploiting the fine-grain metrics according to different error impacts. The comprehensive simulation results using the diverse configures (e.g., varying fault model, benchmark, traffic load, network size and fault list size) also demonstrate that the proposed approach (i) shrinks the estimation inaccuracy due to MCU patterns 18.89% underestimation in no protection case and 88.92% overestimation under ECC (Error Correction Coding) protection on average; (ii) achieves about 5× speedup without estimation accuracy loss via phased pre-analysis based on fine-grain classification; (iii) verifies ECC a cost-effective mechanism to protect NoC router: soft errors reduced by about 50% over the no protection case, with only less than 2% area overhead.  相似文献   

20.
This paper describes a tunable transient filter (TTF) design for soft error rate reduction in combinational logic circuits. TTFs can be inserted into combinational circuits to suppress propagated single-event transients (SETs) before they can be captured in latches or flip-flops. TTFs are tuned by adjusting the maximum width of the propagated SET that can be suppressed. A TTF requires 6–14 transistors, making it an attractive cost-effective option to reduce the soft error rate in combinational circuits. A global optimization approach based on geometric programming that integrates TTF insertion with dual-V DD and gate sizing is described. Simulation results for the 65 nm process technology indicate that a 17–48× reduction in the soft error rate can be achieved with this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号