首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the operation of rotary traveling wave oscillators is analyzed, the general oscillation condition is derived, and analytical formula for the oscillator loss is presented. Based on this analysis, switched transmission line is employed to extend the output frequency tuning range. Post-layout simulation shows a frequency tuning range of 3.1 GHz in the vicinity of 30 GHz. The proposed half-quadrature VCO exhibits a phase noise better than −102.2 dBc/Hz at 1 MHz offset frequency. The VCO provides an output power level ranging from −6 to −2.5 dBm with drawing 15.2 mA of dc current from a 1.8 V power supply.  相似文献   

2.
This study implemented an injection-locked frequency divider (ILFD) on Ka-band millimeter-wave communication systems in 0.5 μm enhancement/depletion-mode (E/D-mode) GaAs PHEMT technology. The ILFD presents a low-power design based on the differential-injection circuit topology without using any injectors. Compared with the conventional single-injection ILFD circuits, the proposed ILFD exhibits output power flatness and wide locking range characteristics with a power consumption of 0.9 mW under a 0.4 V supply. The self-oscillation frequency was chosen to be 20 GHz for divided-by-2 operation. The measured locking range is approximately 11.5 GHz ranging from 32.5 GHz to 44 GHz when the injection power level is 5 dBm. The locking range exhibiting a 3 dB power roll-off characteristic at output is 10.5 GHz ranging from 33 GHz to 42.5 GHz.  相似文献   

3.
This paper presents a new design for a three-stage voltage-controlled differential ring oscillator embedded with a delay cell for a wide tuning range from 59 MHz to 2.96 GHz by adjusting the current level in the delay cell. The ring oscillator consists of a voltage-to-current converter, coder circuit, three-stage ring with delay cells, and current monitoring circuit to extend the tuning range of the proposed voltage-controlled oscillator. Each functional block has been designed for a minimum power consumption using the TSMC 0.18 μm CMOS technology. We simulate the performances of the proposed voltage-controlled oscillator in terms of phase noise, power consumption, tuning range, and gain. Our simulation results show that the proposed oscillator has the linear frequency–voltage characteristics over a wide tuning range. At each tuning range (mode), the calculated phase noise of the proposed ring oscillator at each tuning range (mode) was −87, −85, −81, and −79 dBc/Hz at a 1 MHz offset from the center frequency. The DC power of the proposed voltage-controlled oscillator consumed 0.86–3 mW under a 1.8 V supply voltage.  相似文献   

4.
This letter proposes a new wideband Colpitts injection locked frequency divider (ILFD) and describes the operation principle of the ILFD. The circuit consists of a differential CMOS LC-tank oscillator and a direct injection topology. The divide-by-two ILFD can provide wide locking range, and the measurement results show that at the supply voltage of 2.4 V, the tuning range of the free running ILFD is from 4.46 to 5.6 GHz, about 1.14 GHz, and the locking range of the ILFD is from 8.03 to 11.63 GHz, about 3.6 GHz, at the injection signal power of 0 dBm. The ILFD dissipates 19.92 mW at a supply voltage of 2.4 V and was fabricated in 1P6M 0.18 mum CMOS process. At the tuning voltage of 1.2 V, the measured phase noise of the free running ILFD is -110.8 dBc/Hz at 1 MHz offset frequency from 4.94 GHz and the phase noise of the locked ILFD is -135.4 dBc/Hz, while the input signal power is -4 dBm.  相似文献   

5.
A$V$-band cross-coupled sub-harmonic injection-locked oscillator has been designed and fabricated using 0.15-$mu$m GaAs pHMET technology. Based on the known harmonic injecting circuit topology, this oscillator was designed by a differential output approach, a low-$Q$microstrip-line resonator, and a current mirror, which has a free-running oscillation frequency around 60GHz with a tuning range of 2.5GHz (from 57.8GHz to 60.3GHz). The maximum single-end output power is 3.8dBm with a dc dissipation of 225mW under a$-$3V supply voltage. Within the input matching network for second (30GHz) and fourth (15GHz) sub-harmonic signals injection, it demonstrates the maximum locking ranges close to 120MHz and 30MHz, respectively.  相似文献   

6.
A new divide-by-3 injection-locked frequency divider (ILFD) is proposed. The ILFD consists of a 7.6 GHz voltage controlled oscillator (VCO) and two transformers, which are in series with the crosscoupled transistors in the VCO for signal injection. The proposed CMOS ILFD has been implemented with the TSMC 0.13 μm CMOS technology. At the supply voltage of 0.8 V, the core power consumption is 1.25 mW, and the free-running frequency of the ILFD is tunable from 7.2 to 7.87 GHz. At the input power of 0 dBm, the total divide-by-3 locking range is from 21.56 to 23.63 GHz as the tuning voltage is varied from 0.0 to 0.8 V. The phase noise of the locked ILFD output is lower than that of the free-running ILFD in the divide-by-3 mode.  相似文献   

7.
In this paper, a low-power inductorless ultra wideband (UWB) CMOS voltage-controlled oscillator is designed in TSMC 0.18 μm CMOS technology as a part of a ultra wideband FM (UWBFM) transmitter. The VCO includes a current-controlled oscillator (CCO) which generates output frequencies between 1.5 and 2.8 GHz and a voltage-to-current (V-to-I) converter. A low-power frequency doubler based on a Gilbert cell, which operates in weak inversion, doubles the VCO tuning range achieving oscillation frequencies between 3 and 5.6 GHz. Thus, the well-known proportionality between the oscillation frequency and the bias tuning current in CCOs is avoided for the entire achieved tuning range, resulting in a lower power design. The employed architecture provides high suppression, over 45 dB, of the 1st and 3rd harmonics, while enabling high-frequency operation and conversion gain due to the unbalanced structure and the single-ended output. The current consumption is 5 mA at a supply voltage of 1.8 V. The VCO exhibits a phase noise of −80.56 dBc/Hz at 1 MHz frequency offset from the carrier and a very high ratio of tuning range (60.4%) over power consumption equal to 8.26 dB which is essential for a UWBFM transmitter.  相似文献   

8.
This paper presents a new divide-by-2 quadrature injection-locked frequency divider (QILFD). The QILFD consists of a new transformer-coupled quadrature voltage controlled oscillator (QVCO) with the voltage-current feedback technique and two NMOS switches, which are in parallel with the QVCO resonators for signal injection. The proposed CMOS QILFD has been implemented with the TSMC 0.35 μm CMOS technology and the core power consumption is 16.52 mW at the supply voltage of 2.2 V. The free-running frequency of the QILFD is tunable from 2.85 GHz to 3.07 GHz. At the input power of 0 dBm, the divide-by-2 operation range is from 5.48 GHz to 6.48 GHz. The phase deviation of free running quadrature output is about 0.53°.  相似文献   

9.
This letter presents a low voltage quadrature divide-by-4 (divide4) injection-locked frequency divider (QILFD). The QILFD consists of a 1.8-GHz quadrature voltage controlled oscillator (QVCO) and two NMOS switches, which are inserted into the quadrature outputs of the QVCO for signal injection. The low-voltage CMOS divide4 QILFD has been implemented with the TSMC 0.18-mum 1P6 M CMOS technology and the core power consumption is 3.12mW at the supply voltage of 1.2V. The free-running frequency of the QILFD is tunable from 1.73 to 1.99GHz, the measured phase noise of QILFD is -118dBc/Hz at 1-MHz offset from the free running frequency of 1.82GHz. At the input power of 0dBm, the total locking range is from 6.86 to 8.02GHz as the tuning voltage is varied from 0 to 1.2V. The phase noise of the locked output spectrum is lower than that of free running ring oscillator by 11dBc/Hz. The phase deviation of quadrature output is about 0.8deg  相似文献   

10.
A harmonic injection-locked frequency divider for high-speed applications is presented in this letter. In order to enhance the bandwidth of the high-order frequency division, a positive feedback is employed in the design of the subharmonic mixer loop. The proposed circuit is implemented in a 0.18-/spl mu/m SiGe BiCMOS process. With a singled-ended super-harmonic input injection of 0dBm, the frequency divider exhibits a locking range of 350MHz (from 59.77 to 60.12GHz) for the divide-by-four frequency division while maintaining an output power of -16.6/spl plusmn/ 0.5dBm within the entire frequency range. The frequency divider core consumes a dc power of 50mW from a 3.6-V supply voltage.  相似文献   

11.
为提高毫米波段倍频器在低功耗下的工作带宽,采用IHP130 nm SiGe BiCMOS 工艺,设计了一种采用双端注入技术的毫米波宽锁定范围注入(DEI)锁定倍频器。该注入锁定倍频器主要由谐波发生器和带有尾电流源的振荡器构成,由巴伦产生差分信号双端注入振荡器的形式提高三次谐波注入强度,使其在E、W 等波段输出宽锁定范围和良好相位噪声性能的三倍频信号。仿真结果表明,注入锁定倍频器在工作电压为1.2 V,输入信号功率为0 dBm时,其锁定范围在57~105 GHz 内。在相同工作电压和输入信号功率下,输入频率为32 GHz 时,一次、二次和四次谐波抑制大于20 dBc,功耗为9.1 mW。  相似文献   

12.
为了满足教学和科研的需要,基于负阻原理设计了一款工作于ISM频段2.45 GHz低成本微带压控振荡器。振荡电路采用双电源供电和共基极连接方式,利用双极性晶体管和变容二极管等分立元件制作。借助于ADS软件对电路参数及主要指标进行仿真优化,并进行了实物的加工和测试。实测结果表明,设计的压控振荡器在输入调频电压为06 V时,输出振荡频率覆盖2.46 V时,输出振荡频率覆盖2.42.5 GHz,输出功率大于9.2 d Bm,相位噪声在偏离移中心频率100 k Hz处为-90 d Bc/Hz。该振荡器调谐频带线性度好,输出功率平坦度高。  相似文献   

13.
A new wide locking range divide-by-3 injection-locked frequency divider (ILFD) using a standard 0.18 μm CMOS process is presented. The ILFD uses two concurrent injection mechanisms with two independent push–push circuits to extend the locking range. It is realized with a cross-coupled n-core MOS LC-tank oscillator. The core power consumption of the ILFD core is 11.496 mW. The divider’s free-running oscillation frequency is tunable from 4.32 to 3.78 GHz by tuning the varactor’s control bias, and at the incident power of 0 dBm the maximum locking range is 3 GHz (25 %), from the incident frequency 10.5 to 13.5 GHz. The operation range is 3.6 GHz (30.76 %), from 9.9 to 13.5 GHz.  相似文献   

14.
This letter proposes a new wide band CMOS injection locked frequency divider (ILFD). The circuit is made of a two-stage differential CMOS ring oscillator and is based on MOS switches directly coupled to the differential outputs of the ring oscillator. A tuning circuit composed of inductors in series with a metal oxide semiconductor field effect transistor is used to extend the locking range. The divide-by-two ILFD can provide wide locking range and the measured results show that at the supply voltage of 1.8 V, the free-running frequency of the ILFD is operating from 0.92 to 3.6 GHz while the Vtune is tuned from 0 to 1.8 V. At the incident power of 0 dBm, this ILFD has a wide locking range from 1.15 to 7.4 GHz  相似文献   

15.
Nonlinear dynamics of semiconductor lasers is applied for microwave frequency division. Optical injection is used to drive a slave laser into the dynamical period-two state. A fundamental microwave frequency and its subharmonic are generated in the power spectrum. Both frequencies will be simultaneously locked when an external microwave near either frequency is applied on the bias. In our experiment, precise microwave frequency division is demonstrated by modulating the laser at the fundamental of 18.56 GHz. A locked subharmonic at 9.28 GHz with a low phase variance of 0.007$hbox rad^2$is obtained from a 10-dBm input. A large locking range of 0.61 GHz is measured under a 4-dBm modulation. Similarly, precise frequency multiplication is demonstrated by modulating at 9.65 GHz. At an input power of$-$5 dBm, a multiplied signal at 19.30 GHz is obtained with a phase variance of 0.027$hbox rad^2$and a locking range of 0.22 GHz.  相似文献   

16.
To satisfy the different radiated power requirements for the ultra-wideband (UWB) data transmitting in the implantable electronic devices or the wireless component interconnections, a novel low-power high-speed UWB transmitter with radiated power tuning was proposed. The tunable radiated power is achieved by a UWB RF buffer with a peak value controller. The designed low-complex narrow pulse generator and digital ring on–off VCO ensure a high speed transmitting. The low power is realized by using a subtractor to eliminate the base-band component from the output of the VCO and making the UWB RF buffer and the VCO operating in standby mode. The design was fabricated by a standard 0.18 μm CMOS technology. The test results show that the design can achieve maximum data-rate of 250 Mbps, frequency bandwidth from 3 to 5 GHz, radiated power tuning from −40 dBm to −60 dBm, low-power of 8 pJ/bit, and small circuit area of 0.18 mm2.  相似文献   

17.
This letter proposes a divide-by-four injection-locked frequency divider (ILFD) with the use of a subharmonic mixer and a divide-by-two frequency divider (D2FD). The D2FD circuit consists of a two-stage differential CMOS ring oscillator with n-MOS switches directly coupled to its differential outputs, the measured phase noise of the D2FD is -97 dBc/Hz at 1-MHz offset from the free running frequency of 1.08GHz. The low-voltage CMOS divide-by-four FD (D4FD) has been implemented with the UMC 0.18-mum 1P6M CMOS technology and the power consumption is 9 mW at the supply voltage of 1.2 V. At the input power of 0 dBm, the D4FD can function properly with about 330-MHz locking range from 4.15 to 4.48GHz  相似文献   

18.
A new wide locking range series-tuned (ST) divide-by-3 injection-locked frequency divider (ILFD) using a standard 0.18 μm CMOS process is presented. The ÷3 ILFD circuit is realized with a ST cross-coupled n-core MOS LC-tank oscillator. Two direct-injection MOSFETs in series are used as a frequency doubler and a dynamic linear mixer to widen the locking range. The power consumption of the ILFD core is 10.56 mW. The divider’s free-running frequency is tunable from 3.529 to 3.828 GHz by tuning the varactor’s control bias, and at the incident power of 0 dBm the maximum locking range is 2.3 GHz (21.6 %), from the incident frequency 9.5 to 11.8 GHz. The operation range is 2.5 GHz (23.7 %), from 9.3 to 11.8 GHz.  相似文献   

19.
In this paper a new linear power control technique is presented to control the output power of cascode power amplifiers. Using this technique the output power of power amplifier can be controlled from the maximum output power to −136 dBm, continuously. The characteristic of the output voltage versus control voltage is linear from −15.9 to 18.6 dBm (a range of 34.5 dB) of the output power. Also at this range the Amplitude Modulation to Phase Modulation (AM-PM) distortion is 43°. Furthermore, the input dynamic range is 0.373 V, which is less than the conventional techniques. Having a power controller in a low power path and a low input dynamic range leads to minimizing the controller dissipation and reduction of power added efficiency (PAE). The proposed technique is simulated using 0.13 μm CMOS process model using Advanced Design System and the results obtained are presented.  相似文献   

20.
A fully-integrated dual-band dynamic reconfigurable differential power amplifier with high gain in 65 nm CMOS is presented. A switchable shunt LC network is proposed to implement the dual-band reconfigurable operation and achieve high gain at both low and high frequency bands, and the high quality on-chip transformers are utilized to implement input/output impedance matching and single-ended to differential conversion. Measured results show that the dual-band dynamic reconfigurable power amplifier can provide 23 dB gain at 2.15 GHz and 21 dB gain at 4.70 GHz, and achieve more than 19 dBm saturated output power at 2.15 GHz and 13 dBm saturated output power at 4.70 GHz, respectively. The die area is about 1.7 mm×2.0 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号