首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唐山某污水厂进行一级A提标改造,采用MBBR工艺对氧化沟进行改造,在缺氧区及好氧区同时投加悬浮载体。改造后系统出水COD、BOD5、TN、氨氮、TP、SS分别为(30.5±5.2)、(3.4±0.6)、(13.0±1.4)、(1.6±1.0)、(0.42±0.05)、(7.55±1.18) mg/L,稳定达到一级A标准。污水厂全流程测定结果显示,好氧区存在稳定的同步硝化反硝化(SND)过程,对TN的去除率为8.9%,保障在不投加碳源的情况下出水TN稳定达标。小试结果表明,在10~12℃的低温环境下,悬浮载体的硝化速率为0.13 kgN/(m3·d),原水反硝化速率最大为0.039 kgN/(m3·d),悬浮载体的加入保障了系统低温下良好的处理效果。高通量测序结果表明:好氧区悬浮载体上硝化螺旋菌相对丰度为6.57%,是活性污泥的3倍,并且在好氧区悬浮载体上发现了相对丰度为1.85%的反硝化菌,为SND现象提供了微观解释。缺氧区悬浮载体上反硝化菌的相对丰度为7.72%,是活性污泥中的2.5倍。通过原池嵌入MBBR工艺,强化了系统的硝化反硝化效果。  相似文献   

2.
移动床生物膜反应器(MBBR)是一种高效的生物脱氮工艺,是污水厂提标改造的主流工艺之一。通过北方某污水厂的持续升级改造工程,分析了基于MBBR的AAO和Bardenpho工艺(分别记作MBBR-AAO工艺、MBBR-Bardenpho工艺)的实际运行效果。MBBR-AAO工艺和MBBR-Bardenpho工艺的实际硝化能力分别为0.158、0.208 kg/(m~3·d),远高于活性污泥法,而且MBBR-Bardenpho工艺的抗冲击能力更强、出水水质更稳定;两种工艺的出水TN浓度分别为(20.9±3.8)、(7.4±2.3) mg/L,对TN的去除率分别为71.4%和88.8%。MBBR-Bardenpho工艺可使出水TN低于12 mg/L,达到地表准Ⅳ类水质标准,在TN去除方面优势突出。沿程测定结果显示,MBBR-Bardenpho工艺通过增加后置缺氧区,可使好氧区出水TN进一步降低,大大提高了生化池对TN的去除效果。悬浮载体和活性污泥的高通量测序结果显示,悬浮载体对硝化菌的富集能力较强,相对丰度超过10%,主要起硝化作用;而活性污泥中反硝化菌的相对丰度较高,主要起反硝化作用。两种工艺的生化池占地分别为0.162、0.136 m~2/(m~3·d~(-1)),基于MBBR的优势,均可再次提标提量,吨水占地将进一步降低。两种工艺均有良好的除污效果,其中,MBBR-AAO工艺主要适用于常规浓度进水的一级A达标污水厂,而MBBR-Bardenpho工艺适用于出水水质要求达到地表准Ⅳ类及以上标准的污水厂。  相似文献   

3.
浙江某工业废水处理厂升级改造,采用AAO—MBBR复合生物膜工艺,在未新增建设用地和扩建池容的基础上,日处理量由3×104m3/d提高至6×104m3/d。改造后实际运行出水COD、TP、NH3-N和TN浓度分别为(37.7±6.61)、(0.09±0.03)、(0.25±0.14)和(5.87±1.54)mg/L,出水水质稳定达到一级A标准。实际监测表明,在好氧MBBR区存在TN去除现象,约占TN总去除量的10.36%。系统内的优势硝化菌属为硝化螺旋菌属Nitrospira,其在悬浮载体生物膜和活性污泥中的相对丰度分别为8.98%和0.92%,悬浮载体的投加使硝化细菌得到有效富集;反硝化菌在生物膜中的占比为7.94%,为悬浮载体同步硝化反硝化(SND)效果的发生提供了微观保证,提高了TN去除率。  相似文献   

4.
浙江省某市政污水处理厂设计规模为10×10^4m^3/d,出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级B标准,采用MBBR+磁混凝工艺对其进行一级A升级改造,改造完成至今已运行1年多,在冬季低温条件下仍具有较好的运行效果。改造后,出水COD、BOD5、氨氮、TN、TP和SS平均浓度分别为13.87、2.10、0.75、10.83、0.10和5.3 mg/L,稳定达到了GB 18918-2002的一级A标准。不改变原有CAST工艺的运行方式和池容,在主反应区镶嵌MBBR,安装搅拌器,增加反硝化时序,有效提高了系统的脱氮效果;深度处理采用磁混凝+纤维转盘滤池工艺,以微小磁粉作为晶核,强化混凝效果,确保出水SS和TP稳定达标。生化系统内主要的硝化菌群为Nitrosomonas和Nitrospira,硝化菌群在悬浮载体上的相对丰度达到8.71%,高于活性污泥中的4.85%;主要的反硝化菌群为Azoarcus和Zoogloea,反硝化菌群在悬浮载体上的相对丰度达到11.58%,在活性污泥中为9.78%。  相似文献   

5.
天津市某污水处理厂进行提标改造,出水水质要求达到天津市《城镇污水处理厂污染物排放标准》(DB 12/599—2015)的A类标准,核心生化段采用移动床生物膜反应器(MBBR)工艺进行原位改造,将AAO工艺改为Bardenpho工艺,增设后缺氧区,增强生化系统的脱氮作用,好氧区投加悬浮载体,保障氨氮的稳定达标;深度处理工艺采用气浮、两级臭氧氧化、曝气活性炭滤池以及V型滤池,保障TP、SS、COD稳定达标。实际运行效果显示,在冬季9~11℃的低温条件下,污水厂出水COD、BOD5、氨氮、TN、TP、SS平均值分别为24.52、0.88、0.29、6.82、0.08、2.32 mg/L,稳定达到了提标改造目标。生化段沿程检测结果和硝化试验结果表明,悬浮载体在低温条件下优势突出,硝化速率是活性污泥的10倍,几乎承担了全部的硝化作用,Bardenpho工艺的设计破除了回流比对TN去除的限制,后置缺氧区的TN去除率为24.76%,强化了TN的去除,生化段出水氮素稳定达标。高通量测序结果显示,系统内主要的硝化菌属为Nitrospira,在MBBR区悬浮载体上的相对丰度达到13.14%,而在活性污泥中仅为0.68%。采用MBBR工艺对生化段进行原位改造,能够有效提高系统的硝化能力,是应对冬季低温、确保出水水质达标的有效措施。  相似文献   

6.
浙江某污水厂设计规模为16×104m3/d,采用Bardenpho—MBBR工艺进行升级改造后,生化池出水COD、NH4+-N、TN、TP均值分别为17. 2、0. 37、7. 72、0. 168 mg/L,在不投加碳源的情况下即可达到准Ⅳ类水标准,生物脱氮除磷效果良好。对生化池各功能区沿程采样测定发现,好氧MBBR区对TN的去除率为28%~46%,受到泥浆水冲击后也能保持在15%~22%,系统高效去除TN得益于好氧MBBR区的同步硝化反硝化(SND)作用;由于好氧区的SND现象,平均可以节省0. 23元/m3的碳源费用,年节约碳源费用近1 343. 2万元;生物膜厚度和溶解氧的控制对于稳定表现SND有重要影响;系统中微生物的高通量测序结果显示,悬浮载体上硝化菌丰度为32. 19%、反硝化菌丰度为4. 86%,硝化菌和反硝化菌同时存在为SND现象的产生提供了微观保证;冬季低温时,悬浮载体实际承担了系统近90%的硝化负荷。  相似文献   

7.
浙江某污水处理厂设计规模为16×104m3/d,采用Bardenpho-MBBR工艺进行升级改造,使出水水质由一级B标准提升至地表准Ⅳ类水质标准。针对采用A/A/O工艺的生化池,保持总容积不变且不改变厌氧及缺氧段,通过对好氧段功能重新划分,增加后置缺氧区和后置好氧区,并在好氧区投加悬浮载体,将生化池改造为Bardenpho-MBBR工艺,强化脱氮除磷效果; MBBR区采用微动力混合池型,无需使用推流器,节约投资和运行成本,利于系统运行维护。改造后,生化段出水COD、NH4+-N、TN均值分别为18. 80、0. 27、8. 43 mg/L,在未投加碳源的情况下稳定达到了准Ⅳ类水质标准,生化段出水TP均值为0. 48 mg/L,大大减轻了后续深度处理工艺的除磷负荷; TN去除率较改造前提高了近1倍,这得益于前置缺氧区脱氮效率的提高、填料区的同步硝化反硝化(SND)作用及后置缺氧区的脱氮作用;对系统中微生物进行高通量测序,结果表明,填料对系统的硝化贡献率达到85%,并且填料上附着的反硝化菌占比达到6. 46%,证明好氧区悬浮载体上存在SND过程。Bardenpho-MBBR工艺能耗低、容积效率高、运行效果稳定,突破了常规工艺对TN去除的限制,适用于对出水TN要求严格的准Ⅳ类等高标准水质要求的污水处理厂新建及改造工程。  相似文献   

8.
针对某污水厂进水碳源不足、负荷冲击性强以及占地受限等问题,拟采用A~2O—MBBR工艺进行提标改造,并开展中试研究。中试结果表明,在进水平均C/N值3的条件下,生化池出水COD、NH_3-N、TN、TP平均值分别为14.4、0.24、5.93、0.25 mg/L,TN去除率相比现状污水厂提高了27.2%;在1.4倍水量冲击下,出水COD、NH_3-N、TN、TP平均值分别为9.9、0.56、6.17、0.2 mg/L;当垃圾渗滤液投加比为0.1%~0.4%时,出水COD、NH_3-N、TN、TP平均浓度分别为18.1、0.57、8.05、0.2 mg/L;悬浮载体上硝化菌群相对丰度为13.32%,反硝化菌群相对丰度为14.29%,硝化菌和反硝化菌同时存在,为同步硝化反硝化的发生提供了微观保证。可见,MBBR工艺可以强化中试系统的脱氮除磷能力,大幅提高系统的抗冲击负荷能力。  相似文献   

9.
北方某卡鲁塞尔氧化沟污水厂采用MBBR进行提标改造,生化系统改造中保持厌氧区停留时间不变,缺氧区停留时间由3. 07 h增加到11. 34 h,好氧区投加SPR-Ⅱ型悬浮载体,系统末端增加连续流砂滤池。工艺改造后,在进水水质略有提高的情况下,出水COD、NH3-N、TN、TP和SS平均值分别为35、1. 1、10. 1、0. 4和5. 1 mg/L,基本达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。其中好氧段有显著的同步硝化反硝化现象,可去除2~5mg/L的TN;缺氧段内存在明显的反硝化除磷现象,TP去除率达87%。改造后节能降耗明显,电费减少0. 095元/m3,药剂费减少0. 299元/m3,合计减少运行成本0. 394元/m3。  相似文献   

10.
在不新增占地的情况下,山西某污水厂采用改良A2/O-MBBR工艺进行一级A提标改造;采用"镶嵌"理念,将原厌氧区分割为预缺氧区和厌氧区,同时将原好氧区分割为缺氧区和好氧区,并在好氧区投加SPR-2型悬浮填料,悬浮填料符合《水处理用高密度聚乙烯悬浮载体》(CJ/T 461—2014)行业标准。改造后,污水厂经历了冬季低温、进水水质剧烈波动等阶段,但出水水质能够稳定达到一级A标准,部分指标达到了地表水准Ⅳ类水平,COD、氨氮、TN和TP平均出水浓度分别为19. 66、0. 87、11. 37、0. 24 mg/L,平均去除率分别为93. 1%、97. 9%、76. 8%、93. 3%,表现出良好的耐低温及抗冲击性能,并实现了同步强化脱氮除磷。经改造后,能耗未有显著增加,且合理的工艺布局及好氧区SND现象的出现,使碳源投加量仅为设计值的一半。高通量测序以及生物量测定表明,加入悬浮填料后形成了泥膜复合工艺,优化了系统的菌落分布,增加了菌群的多样性;悬浮填料对硝化菌群富集具有重要作用,冬季低温时填料对硝化的贡献率达到了79%;悬浮载体上存在一定量的反硝化菌群,这为进行SND提供了微观保障,有效降低了碳源投加量,提高了TN去除效率。MBBR工艺占地省、负荷高、抗冲击能力强,能够优化和改善微生物菌落结构,适合于污水厂提标改造。  相似文献   

11.
采用MBBR对某污水厂扩容2×10~4m~3/d,改造后污水处理规模达到12×10~4m~3/d;改造时,保持厌缺氧区不变,好氧区采用两级MBBR、微动力混合池型,强化系统抗冲击能力;好氧区投加SPR-3型填料;同时将二沉池改建为高效沉淀池,新增转鼓过滤。改造后水量提升20%,出水水质稳定达到一级A标准,优化运行后可达到地表水准Ⅳ类水质;生化池出水TN均值为10. 40 mg/L,TN去除率为83. 50%,好氧段可去除TN 6~10 mg/L;生化池出水TP为0. 43 mg/L,TP去除率为93%,缺氧段发生显著的TP去除现象,在高效沉淀池投加铁盐絮凝剂后,出水TP可降到0. 30 mg/L以下;系统内同步硝化反硝化(SND)及反硝化除磷菌(DPB)的出现,实现了碳源限制下的同步强化脱氮除磷,未投加碳源情况下TN和TP稳定达标,通过SND途径去除TN贡献率为13. 20%,通过DPB途径去除TP贡献率为88%,实现了节能降耗。  相似文献   

12.
呼和浩特市某污水处理厂设计规模为5×10~4m~3/d,原采用CAST工艺,出水主要指标均劣于《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级B标准,为使出水水质达到一级A标准,提标改造工程采用了MBBR+活性砂滤池工艺。提标改造工程完成至今已运行2年多,在进水水质远超设计值的情况下,其处理出水水质依然能够达到一级A标准,具有较好的处理效果。改造后,平均出水COD、BOD_5、氨氮、TN、TP分别为23.5、4.5、1.58、12.3、0.28 mg/L;系统在实际进水各主要指标的最大冲击负荷超过设计值200%,以及呼市冬季平均水温在8~12℃时,亦具有良好的处理效果,表明系统具有较好的耐冲击及耐低温性能;平均总氮去除率超过80%,回流比不超过300%,好氧区填料上反硝化菌群丰度为11.44%,揭示好氧过程中可能存在着同步硝化反硝化现象;系统内主要的硝化菌群、反硝化菌群数量高于改造前,且填料上硝化菌群丰度达到14.6%,高于活性污泥中的6.98%,优势菌属分别为Nitrosomonas和Nitrospira;同时检出系统中有ANAMMOX菌存在。  相似文献   

13.
针对国内污水处理厂在升级改造中面临用地受限、出水水质难以稳定达标等问题,拟采用移动床生物膜工艺加以解决。中试研究表明,泥膜复合系统运行效果良好,抗冲击负荷能力强,可同时强化脱氮除磷,出水COD、TN、NH_4~+-N浓度均能稳定达到一级A标准,平均值分别为27.96、10.72、1.21 mg/L,均优于活性污泥系统,且进水负荷提高了25%。当污泥浓度为2.8~3.2g/L、DO控制在1.2~1.6 mg/L、按C/N值为3~4投加碳源时,对TN的去除效果最佳,去除率达到82%以上。好氧区悬浮填料经过72 d生物膜成熟,最终表面负荷达到了1.39 g N/(m~2·d);缺氧区悬浮填料至120 d时表面负荷达到1.28 g N/(m~2·d)。将移动床生物膜工艺用于A~2/O的升级改造,可大幅提高容积负荷,且出水水质能够稳定达标。  相似文献   

14.
北方某工业园区污水处理厂面临水质贫营养、进水混凝剂含量和TN浓度高、运行费用高等问题,需进行升级改造;同时要求改造工艺能充分利用现有设备,且改造周期短。拟采用MBBR工艺进行改造,一期在好氧区投加悬浮载体,二期在好氧、缺氧区同时投加悬浮载体,用以强化系统硝化及反硝化效果,并进行技术路线对比。运行结果表明,采用MBBR进行升级改造能够有效解决污水厂面临的问题,系统运行良好,改造后生化段出水NH_4~+-N及TN、全厂出水COD均能达到《城镇污水处理厂污染物排放标准》的一级A标准;经MBBR升级改造后,能够有效提高对废水中难降解有机物的去除效果,COD平均去除率提高了30%,有效减轻了后续深度处理工序的负荷;MBBR工艺充分强化了生化系统硝化能力,保证出水NH_4~+-N1 mg/L;通过投加葡萄糖可保证出水总氮15 mg/L,且改造后C/N设计值为6,而实际运行仅为5.33,有效节约碳源用量;两种技术路线均能够实现对总氮去除效果的提升,其中,在好氧区投加悬浮载体的投资费用低,而在好氧区、缺氧区同时投加悬浮载体能有效提高碳源利用率,节省后期运行成本。  相似文献   

15.
基于MBBR开发了一种新型全程自养脱氮工艺——NAUTO~(TM),采用其处理污泥厌氧消化脱水液,考察了启动和稳定运行效果。通过接种CANON悬浮载体来缩短NAUTO~(TM)工艺的启动时间。在接种率为10%的情况下,运行84 d后对NH_4~+ -N的去除率即可达83. 40%,总氮去除负荷超过0. 90 kg/(m~3·d)。系统稳定运行超过300 d,出水NH_4~+ -N浓度低于30 mg/L,氨氮和TN去除率分别达到95. 06%和89. 71%,TN去除负荷最高可达1. 21 kg/(m~3·d)。对悬浮载体的高通量测序结果显示,NAUTO~(TM)工艺启动成功后,氨氧化菌(AOB)和厌氧氨氧化菌(AnAOB)都是系统中的优势菌种,稳定运行阶段丰度分别达到16. 80%和23. 17%,而主要干扰菌群亚硝酸盐氧化菌(NOB)和反硝化菌(DNB)被成功抑制,反硝化菌丰度仅为3. 66%,几乎未检测出NOB。NAUTO~(TM)工艺启动时间短、运行负荷高、运行控制稳定,适合于自养脱氮的工程应用。  相似文献   

16.
国内污水厂面临地表Ⅳ类水提标,缺乏相关技术及经验,且运行能耗高。北方某污水处理厂新建工程设计规模为4.5×10~4m~3/d,设计出水为地表Ⅳ类水标准,采用新型悬浮载体强化脱氮除磷工艺(A~2/O-A/O),在好氧区投加SPR-3新型悬浮载体填料。稳定运行期间,出水COD、BOD_5、NH_4~+-N、TN、TP均稳定达到类地表Ⅳ类水标准,出水相应指标平均值分别为20.64、4.70、0.49、7.89、0.28 mg/L。当进水碳源不足时,在总回流比为200%~300%、碳源投加量为10 mg/L条件下,对TN去除率均值达到89.71%,同步硝化反硝化提高了总氮去除率,降低了回流比,后置反硝化区内碳源利用降低了碳源投加量。MBBR区设计为微动力混合池型,无需使用推流器,不仅节约了投资和运行成本,更有利于系统运行维护,平均电耗为0.289 9 k W·h/m~3、0.906 4 k W·h/kg COD。新型悬浮载体强化脱氮除磷技术能耗低、容积效率高、运行效果稳定,适用于地表Ⅳ类等高标准水质要求的污水处理厂新建及改造工程。  相似文献   

17.
为了降低城市污水处理厂深度脱氮过程中有机碳源的消耗量,提出了短程反硝化/厌氧氨氧化双滤池系统,并通过试验考察了厌氧氨氧化滤池的脱氮性能及菌群结构。结果表明,厌氧氨氧化滤池在进水NH~+_4-N和NO~-_2-N平均浓度分别为9.9、9.1 mg/L条件下,出水NH~+_4-N和TN平均浓度分别为2.5、9.5 mg/L,达到了《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准,对应的滤池HRT为15 min,容积氮去除速率为1.0 kg/(m~3·d)。滤池中的厌氧氨氧化菌属为CandidatusKuenenia和CandidatusBrocadia,相对丰度分别为4.33%和2.70%。与传统反硝化滤池相比,短程反硝化/厌氧氨氧化双滤池系统可节省有机碳源62%,同时可降低污泥产量,减少滤池反冲洗次数。  相似文献   

18.
研究了硝化和反硝化滤池系统应用于市政污水一级A出水水质提升至Ⅳ类地表水水质的可行性。当中试系统进水NH_4~+-N均值为16.05 mg/L时,出水NH_4~+-N均值为0.3 mg/L,硝化滤池的平均硝化负荷为0.32 kg NH_4~+-N/(m~3滤料·d);进水TN均值为17.9 mg/L时,出水TN均值为2.7 mg/L,反硝化滤池的平均脱氮负荷为1.2 kg N/(m~3滤料·d);进水TP均值为0.65mg/L时,出水TP均值为0.27 mg/L。中试结果表明硝化和反硝化滤池系统基本可以满足将市政污水一级A出水水质提升至Ⅳ类地表水水质的提标改造要求。  相似文献   

19.
在反硝化滤池生物脱氮系统构建成功的基础上,投加除磷药剂建立生物/化学协同处理系统,重点研究了除磷药剂种类、投加量对该工艺处理污水厂尾水效能及微生物种群的影响。结果表明,除磷药剂种类(Fe Cl_3、Al Cl_3、氢氧化钙)及其投加量对系统脱氮效果的影响不显著,但对除磷效果影响显著,投加Al Cl_3的除磷效果较优;在温度为25~35℃、水力负荷为3 m~3/(m~2·h)、补充碳源后的COD/TN为6、Al Cl_3投加量为3.0 mg/L时,系统出水NH_4~+-N、TN、PO_4~(3-)-P浓度分别为1.72、1.73、0.19 mg/L,去除率分别为57.10%、91.69%、81.68%,可稳定达到地表水环境Ⅴ类水体标准。PCR-DGGE和16S rRNA高通量测序结果表明,反硝化滤池生物/化学协同处理系统中脱氮功能菌属主要有Hydrogenophaga、Thauera、Dechloromonas、Zoogloea,其相对丰度分别为24.07%、12.26%、8.50%、0.44%;投加除磷药剂的协同处理系统与生物脱氮系统的微生物种群相似性为49.9%,生物多样性降低。  相似文献   

20.
反硝化滤池是污水处理厂强化脱氮的重要技术途径之一。研究了进水碳氮比(COD/N)和空床停留时间(EBRT)对某再生水厂后置反硝化滤池反硝化脱氮性能的影响,同时考察了生物膜特征及其活性。在进水COD/N值为4.5、EBRT为28.2 min时,NO_3~--N去除率最高为72.69%,去除负荷为0.42 g N/(m~2·d);在相近EBRT(27.7 min)下,提高进水COD/N值至6.5和7.5,NO_3~--N去除负荷明显提高,分别为0.75和0.73 g N/(m~2·d)。在反硝化滤池底部滤层NO_3~--N的沿程降解符合半阶动力学方程,半阶动力学系数随EBRT的降低和进水COD/N值的提高而增大。反硝化所需COD/N值平均为5.67。中层滤料生物膜的生物量及其厚度最大(分别为8 678.43 mg/m~2和131.25μm)。生物膜密度由下至上逐渐增大,分别为52.58、66.12和104.59mg/cm~3。反硝化活性由下至上略微增大,分别为11.34、11.44和13.47 mg N/(g VSS·h)。生物膜微生物以Beta变形菌为主,相对丰度大于85%;Methylophilaceae科菌群相对丰度最高(42.1%);所检测到的主要菌属包括Georgfuchsia(24.3%)和Sulfuricella(4.6%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号