首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.  相似文献   

2.
The mechanical testing of narrow-gap welded joints in 100 and 200 mm thick sections of the steel 22 NiMoCr 37 has revealed that the weld metal, and not the heat affected zone (HAZ) or the weld metal-parent metal boundary. is the critical region. This modified gas-shielded welding process operates with a very low heat input of the order of 6.500 J cm−1 pass−1 and the combination of small diameter welding wires and high welding speeds contributes to the excellent joint properties in the as-welded condition.To investigate the effect of preheating and post-welding heat treatment on the mechanical properties of narrow-gap welds, tensile, notch impact, flat bend and fracture toughness test specimens were extracted from joints welded with the following conditions: (1) no preheating: no post-weld heat treatment; (2) no preheating: soaking at 300°C: (3) no preheating: stress-relief heat treatment at 600°C; (4) preheating 200–250°C; no post-weld heat treatment; (5) preheating 200–250°C; soaking at 300°C; (6) preheating 200–250°C; stress relief heat treatment at 600°C. Tensile testing at room temperature and at 250°C of round specimens oriented across the seam revealed the ultimate fracture to be always located in the base material remote from the welded zone. Although pores or slag inclusions had an influence on bend-test results of specimens in the as-welded condition, the results generally show failure free bends to 180°C with no evidence of cracking in the HAZ or at the fusion boundary.Using sharp-notched impact bend specimens with the notch located in the centre of the seam as well as in and across the HAZ, absorbed energy-test temperature curves have been determined for each welding condition. In comparison with the base material impact toughness, the weld exhibits superior toughness in the temperature range − 60 – 0°C, but yielded lower values at room temperature. After stress relieving at 600°C, the impact toughness of the weld reduced significantly, apparently due to precipitations occurring in the weld-metal microstructure. Test results from welded specimens with the no notch in the HAZ show this region to have superior notch impact toughness to the base material.Crack opening displacement (COD) specimens 45 × 90 × 380 mm with the fatigue crack located in the weld metal and in the HAZ were tested at 0 and 20°C using both the recommendation in BS DD 19: 1972 as well as acoustic emission measurements for the determination of COD values. For this method of fracture toughness testing it has been shown that the occurrence of a critical event must be clearly defined as corresponding to stable crack growth or alternatively to unstable crack propagation.  相似文献   

3.
The static fracture toughness of EUROFER 97 reduced activation ferritic-martensitic steel was investigated in presence of higher content of hydrogen. The hydrogen effect is shown during fracture toughness testing both of base and weld metals at room temperature and at 120 °C. At the room temperature testing the J0.2 integral values will decrease depending on hydrogen content in the range of 2-4 wppm. The same hydrogen content of 2 wppm manifests itself by an uneven level of hydrogen embrittlement for base metal and weld metal. This corresponds to a different J0.2 integral value and a different mechanism of fracture mode. At the hydrogen content of 4 wppm more evident decrease of J0.2 was observed for both metals. At 120 °C hydrogen decreases J0.2 integral in base metal at a limited scale only in comparison to weld metal. At room temperature and hydrogen content of about 4 wppm the base metal specimen exhibits inter-granular fracture and trans-granular cleavage on practically the whole crack surface. The weld metal fracture has shown inter-granular and trans-granular mechanism with ductile and dimple rupture.  相似文献   

4.
A detailed knowledge of changes in microstructures and mechanical behaviour that occur in austenitic stainless steels with or without Nb/Ti-stabilized weld during heat treatment is of great interest, since the ductility and toughness of the material may change drastically after long aging times. Two kinds of materials, i.e. AISI 321 base and without Ti-stabilized weld steel and AISI 347 base with Nb-stabilized weld steel, were compared during aging at 700 °C up to 6000 h. Both materials present increased amount of precipitate and decreased impact energy as the aging time increases. The decreased extent of impact energy with aging is almost the same for both base materials. However, it presents differences for 347 and 321 weld samples. The latter shows a more drastic decrease of impact energy than the former due to the different amount of precipitates. 321 weld sample precipitates more numerously than 347 weld sample due to the absence of stabilized Ti/Nb on the former. Large amount of carbides is formed on 321 weld sample immediately after welding. The carbides are transformed to sigma phase, which is mainly responsible for the much more sigma phase precipitation compared with other samples, after high-temperature aging. The fractographs showed, in general, brittle fracture mode in 321 weld impact-fractured specimens after aging at 700 °C for 6000 h. However, other samples show ductile fracture mode in general. Several approaches should be employed to control sigma phase precipitation in weld material. These approaches include: decreasing content of ferrite and M23C6 carbide in weld and selecting Nb added weld wire during welding.  相似文献   

5.
The presence of micro-cracks at the surface of a ferritic-martensitic steel is known to favour its embrittlement by liquid metals and thus decrease the mechanical properties of the structural materials. Unfortunately, conventional fracture mechanics methods cannot be applied to tests in liquid metal environment due to the opaque and conducting nature of the LBE. Therefore new methods based on the normalization technique for assessment of plain strain fracture toughness in LBE were examined. This paper discusses the assessment of the plain strain fracture toughness of T91 steel in liquid lead bismuth environment at 473 K, tested at a displacement rate of 0.25 mm min−1 and makes the comparison with results obtained in air at the same temperature and displacement rate. Although there is a decrease of the fracture toughness by 20-30% when tested in LBE, the toughness of the T91 steel remains sufficient under the tested conditions.  相似文献   

6.
The effect of thermal aging on mechanical properties and fracture toughness was investigated on pressure vessel steel of light water reactors. Submerged are welded plates of ASME SA508 C1.3 steel were isothermally aged at 350°C, 400°C and 450°C for up to 10,000 hrs. Tensile, Charpy impact and fracture toughness testings were conducted on the base metal and the weld heat affected zone (HAZ) material to evaluate whether thermal aging induced by the plant operation is critical for the integrity of the pressure vessel or not. Tensile properties of the base metal was not changed by thermal aging as far as the thermal aging conditions were concerned. Relatively distinct degradation was observed in fracture toughness JIC and J-resistance properties of both the base metal and the weld HAZ material, while only slight changes were observed in Charpy impact properties for both of them. However, it was concluded that the effect of thermal aging estimated by 40–80 years of plant operation on fracture toughness of both materials is small.  相似文献   

7.
The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV.Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation.Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the “Master curve” approach. Moreover, J-R dependencies were determined and analyzed.The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given.Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.  相似文献   

8.
The leak before break analysis of SS 316L(N) components of the prototype fast breeder reactor requires the elastic plastic fracture toughness parameter J for 0.2 mm crack extension, J0.2, especially for the welds, at the operating temperatures. The J-R curves for the welds produced using the consumable developed by Indira Gandhi Centre for Atomic Research, were determined in the as-welded condition as well as after thermal ageing (923 K/4200 h) conditions at 298 K and 643 K, using unloading compliance method for 298 K and normalization method for 643 K. The aged material exhibited pop-in crack extensions of magnitudes that, according to ASTM E1820 standard, could be ignored for multi-specimen data analysis for determining J0.2. Therefore, for this condition, Jnom-Δa curves were established using the multiple specimen method and also single specimen normalization method; for the latter, a modification earlier developed by the authors for accounting for small pop-in crack extensions was used. The value of J0.2 from both methods showed excellent reproducibility. Ageing is seen to reduce the toughness of this material considerably at both the testing temperatures.  相似文献   

9.
The 9 wt.% chromium ferritic-martensitic steel T91 is being considered as candidate structural material for a future experimental accelerator driven system (XT-ADS). This material and its welded connections would need to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both unirradiated tungsten inert gas (TIG) and electron beam (EB) welds of T91 have been examined by means of metallography, scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM), Vickers hardness measurements and tensile testing in both gas and liquid lead-bismuth environment. The TIG weld was commercially produced and post weld heat treated by a certified welding company while the post weld heat treatment of the experimental EB weld was optimized in terms of the Vickers hardness profile across the welded joint. The mechanical properties of the T91 TIG and EB welds in contact with LBE have been examined using slow strain rate tensile testing (SSRT) in LBE at 350 °C. All welds showed good mechanical behaviour in gas environment but total elongation was strongly reduced due to liquid metal embrittlement (LME) when tested in liquid lead-bismuth eutectic environment. The reduction in total elongation due to LME was larger for the commercially TIG welded joint than for the EB welded joint.  相似文献   

10.
About 300 welded joint materials that are used in nuclear power energy were tested under monotonous tension and low cycle loading in Kaunas University of Technology together with St. Peterburg Central Research Institute of Structural Materials in 1970–2000. The main mechanical, low cycle loading and fracture characteristics of base metals, weld metals and some heat-affected zones of welded joints metals were determined during these experiments. Analytical dependences of low cycle fatigue parameters on mechanical characteristics of structural materials were proposed on the basis of a large number of experimental data, obtained by the same methods and testing equipment. When these dependences are used, expensive low cycle fatigue tests may be omitted and it is possible to compute low cycle loading curves parameters and lifetime for structural materials according to the main mechanical characteristics given in technical manuals. Dependences of low cycle loading curves parameters on mechanical characteristics for several groups of structural materials used in Russian nuclear power energy are obtained by statistical methods and proposed in this paper.  相似文献   

11.
The microstructure of a radiation-sensitive KS-01 test weld has been characterized by atom probe tomography. The levels of copper, manganese, nickel and chromium in this weld were amongst the highest of all the steels used in Western reactor pressure vessels. After neutron irradiation to a fluence of 0.8 × 1023 n m−2 (E>1 MeV) at a temperature of 288 °C, this weld exhibited a large Charpy T41J shift of 169 K, a large shift of the fracture toughness transition temperature of 160 K, a decrease in upper shelf energy from 118 to ∼78 J, and an increase in the yield strength from 600 to 826 MPa. However, the mechanical properties data conformed to the master curve. Atom probe tomography revealed a high number density (∼3 × 1024 m−3) of Cu-, Mn-, Ni-, Si- and P-enriched precipitates and a lower number density (∼1  × 1023 m−3) of P clusters.  相似文献   

12.
The IFMIF is an accelerator-based intense neutron source for testing candidate fusion materials. Intense neutrons equivalent to neutron irradiation damage of about 50 dPa/y are emitted inside the Li flow through a back plate. Around the back plate, a lip seal made of 316 L is welded by laser-welding system for replacement by remote handling. The back plate will be designed for replacement at least every year. According to material tests of the lip seal weld joint (316 L/316 L) at room temperature, significant deterioration was not observed. Further investigation of the welding process of the lip seal such as a welding direction and a welding joint shape is in progress. Remote handling procedure of the back plate is examined. At first, three lip seal joints of connection piping will be cut by the laser cutting/welding device and then the target assembly with the back plate will be moved to a hot cell. The back plate lip seal will be cut by the laser arm in the hot cell. After machining and Li cleaning of the lip seal, a new back plate will be welded and moved to test cell/target room.  相似文献   

13.
The corrosion behavior of SUS410–SUS410, SUS316–SUS316, SUS410–SUS316 tungsten inert gas welded joints in static Li at 600 °C for 250 h was investigated as applied for lithium-cooled systems of fusion reactor. The different regions of welded joints (base metal, weld metal, heat affected zone, fusion layer) possessed by the same phase state (ferrite or austenite) showed no substantial difference in the corrosion behavior under the given conditions of test. The corrosion attack resulted in the marked depletion of corresponded near-surface layers with chromium and nickel. The clear corrosion induced refining of surface grain structure, in comparison with initial surface morphology (polished) and corresponded bulk grain size, was observed indicating about the prevalence of the grain boundary corrosion attack during which the low-angle sub-boundaries transform into the large-angle due to the increase in their defectiveness.  相似文献   

14.
The properties of simple point defect (i.e. vacancy, self and foreign interstitial atoms) in the hcp (alpha) and bcc (beta) Zr with trace solute Nb have been studied by ab initio calculations with VASP codes. The calculations indicate that the formation energies of vacancy and substitutional Nb atom are 1.94 eV and 0.68 eV in alpha Zr and 0.36 eV and 0.07 eV in beta Zr, respectively, while the binding energies of the nearest neighbor vacancy-substitutional Nb pair and the nearest neighbor substitutional Nb-Nb pair are 0.09 eV and 0.03 eV in alpha Zr and 2.78 eV and 0.72 eV in beta Zr, respectively. These results suggest that the Nb atoms are more likely to agglomerate and form precipitates in the beta Zr than in the alpha Zr. Thus, the α-Zr-β-Zr-β-Nb transition mechanism through in situ α to β transformation of Zr and the vacancy-assisted Nb diffusion for Nb conglomeration in beta Zr under irradiation is proposed to explain the existence of beta Nb and Zr precipitate mixtures observed in the experiments for the Zr-Nb alloy. In addition, the defect formation energies in bcc Nb are also presented.  相似文献   

15.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

16.
The effects of neutron irradiation on the microstructure of welded joints made of austenitic stainless steels have been investigated. The materials were welded AISI 304 and AISI 347, so-called test weld materials, and irradiated with neutrons at 300 °C to 0.3 and 1.0 dpa. In addition, an AISI 304 type from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 300 °C, was investigated. The microstructure of heat-affected zones and base materials was analysed before and after irradiation, using transmission electron microscopy. Neutron diffraction was performed for internal stress measurements. It was found that the heat-affected zone contains, relative to the base material, a higher dislocation density, which relates well to a higher residual stress level and, after irradiation, a higher irradiation-induced defect density. In both materials, the irradiation-induced defects are of the same type, consisting in black dots and Frank dislocation loops. Careful analysis of the irradiation-induced defect contrast was performed and it is explained why no stacking fault tetrahedra could be identified.  相似文献   

17.
W and W alloys are currently considered promising candidates for plasma facing components in future fusion reactors but most of the information on their mechanical properties at elevated temperature was obtained in the 1960s and 1970s. In this investigation, the strength and toughness of novel Y2O3-doped W-Ti alloys manufactured by powder metallurgy were measured from 25 °C up to 1000 °C in laboratory air and the corresponding deformation and failure micromechanisms were ascertained from analyses of the fracture surfaces. Although the materials were fairly brittle at ambient temperature, the strength and toughness increased with temperature and Ti content up to 600 °C. Beyond this temperature, oxidation impaired the mechanical properties but the presence of Y2O3 enhanced the strength and toughness retention up to 800 °C.  相似文献   

18.
EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.  相似文献   

19.
20.
The static corrosion tests in lead-bismuth eutectic (LBE) were conducted from 450 °C to 600 °C to understand corrosion behavior and develop corrosion resistant materials for heavy liquid metal systems. While increase of Cr content in steels enhances corrosion resistance in LBE, the effect approaches a constant value above 12 wt% of Cr. Corrosion depth in LBE increases with increasing temperature and corrosion attack becomes severe above 550 °C even under the condition of high oxygen concentration. Nickel dissolution and Pb-Bi penetration occur in 316SS and JPCA above 550 °C under the condition of high oxygen concentration. When oxygen concentration decreases below the level of Fe oxide formation, corrosion attack on these steels also becomes violent due to dissolution of various elements and grain boundary corrosion. Whereas additions of 1.5 wt% Si to T91 and 2.5 wt% Si to 316SS improve corrosion resistance, the effect is insufficient taking fluctuation of oxygen concentration in LBE into consideration. Furthermore, addition of 1.5 wt% Si to T91 causes rise in DBTT. A new coating method using Al, Ti and Fe powders produces corrosion resistant coating layers on 316SS. The coating layers containing 6-8 wt% Al exhibit good corrosion resistance at 550 °C for 3000 h in LBE containing 10−6-10−4 wt% of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号