首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of high burn-up structured material on UO2 corrosion has been studied in an autoclave experiment. The experiment was conducted on spent fuel fragments with an average burn-up of 67 GWd/tHM. They were corroded in a simplified groundwater containing 33 mM dissolved H2 for 502 days. All redox sensitive elements were reduced. The reduction continued until a steady-state concentration was reached in the leachate for U at 1.5 × 10−10 M and for Pu at 7 × 10−11 M. The instant release of Cs during the first 7 days was determined to 3.4% of the total inventory. However, the Cs release stopped after release of 3.5%. It was shown that the high burn-up structure did not enhance fuel corrosion.  相似文献   

2.
The applicability of cerium oxide, as a surrogate for plutonium oxide, was evaluated for the fabrication process of a MOX (mixed oxide) fuel pellet. Sintering behavior, pore former effect and thermal properties of the Ce–MOX were compared with those of Pu–MOX. Compacting parameters of the Pu–MOX powder were optimized by a simulation using Ce–MOX powder. Sintering behavior of Ce–MOX was very similar to that of Pu–MOX, in particular for the oxidative sintering process. The sintered density of both pellets was decreased with the same slope with an increasing DA (dicarbon amide) content. Both the Ce–MOX and Pu–MOX pellets which were fabricated by an admixing of 0.05 wt% DA and sintering in a CO2 atmosphere had the same average grain size of 11 μm and a density of 95%T.D. The thermal conductivity of the Pu–MOX was a little higher than that of the Ce–MOX at a lower temperature but both conductivities became closer to each other above 900 K. Cerium oxide was found to be a useful surrogate to simulate the Pu behavior in the MOX fuel fabrication.  相似文献   

3.
The reactivity of H2 towards UO22+ has been studied experimentally using a PEEK coated autoclave where the UO22+ concentration in aqueous solution containing 2 mM carbonate was measured as a function of time at pH2∼40 bar. The experiments were performed in the temperature interval 74-100 °C. In addition, the suggested catalytic activity of UO2 on the reduction of UO22+ by H2 was investigated. The results clearly show that H2 is capable of reducing UO22+ to UO2 without the presence of a catalyst. The reaction is of first order with respect to UO22+. The activation energy for the process is 130 ± 24 kJ mol−1 and the rate constant is k298K=3.6×10−9 l mol−1 s−1. The activation enthalpy and entropy for the process was determined to 126 kJ mol−1 and 16.5 J mol−1 K−1, respectively. Traces of oxygen were shown to inhibit the reduction process. Hence, the suggested catalytic activity of freshly precipitated UO2 on the reduction of UO22+ by H2 could not be confirmed.  相似文献   

4.
A simple mathematical model describing the hydrogen peroxide concentration profile in water surrounding a spent nuclear fuel pellet as a function of time has been developed. The water volume is divided into smaller elements, and the processes that affect hydrogen peroxide concentration are applied to each volume element. The model includes production of H2O2 from α-radiolysis, surface reaction between H2O2 and UO2 and diffusion. Simulations show that the surface concentration of H2O2 increases fairly rapidly and approaches the steady-state concentration. The time to reach steady-state is sufficiently short to be neglected compared to the times of interest when simulating spent fuel dissolution under deep repository conditions. Consequently, the steady-state approach can be used to estimate the rate for radiation-induced spent nuclear fuel dissolution.  相似文献   

5.
In order to elucidate the effect of noble metal clusters in spent nuclear fuel on the kinetics of radiation induced spent fuel dissolution we have used Pd particle doped UO2 pellets. The catalytic effect of Pd particles on the kinetics of radiation induced dissolution of UO2 during γ-irradiation in containing solutions purged with N2 and H2 was studied in this work. Four pellets with Pd concentrations of 0%, 0.1%, 1% and 3% were produced to mimic spent nuclear fuel. The pellets were placed in 10 mM aqueous solutions and γ-irradiated, and the dissolution of was measured spectrophotometrically as a function of time. Under N2 atmosphere, 3% Pd prevent the dissolution of uranium by reduction with the radiolytically produced H2, while the other pellets show a rate of dissolution of around 1.6 × 10−9 mol m−2 s−1. Under H2 atmosphere already 0.1% Pd effectively prevents the dissolution of uranium, while the rate of dissolution for the pellet without Pd is 1.4 × 10−9 mol m−2 s−1. It is also shown in experiments without radiation in aqueous solutions containing H2O2 and O2 that ?-particles catalyze the oxidation of the UO2 matrix by these molecular oxidants, and that the kinetics of the catalyzed reactions is close to diffusion controlled.  相似文献   

6.
Thermal desorption of hydrogen molecules from H+ irradiated graphite is studied using dynamic Monte Carlo simulation. The purpose of this study is to understand the experimentally observed phenomena that the thermal desorption of H2 from the graphite exhibits sometimes single desorption peak, sometimes double peaks, and even three desorption peaks under certain circumstances. The study result reveals that the fluence of pre-implanted H+, the concentration of trap sites, porosity, and mean crystallite volume are important parameters in determining the number of desorption peaks. It is found that low implantation fluence and high concentration of trap sites easily lead to the occurrence of single desorption peak at around 1000 K, and high implantation fluence and low concentration of trap sites favor the occurrence of double desorption peaks, with a new desorption peak at around 820 K. It is also found that small porosity of graphite and large crystallite volume benefit the occurrence of single desorption peak at around 1000 K while large porosity of graphite and small crystallite volume facilitate the occurrence of double desorption peaks, respectively, at around 820 and 1000 K. In addition, experimentally observed third desorption peak at lower temperature is reproduced by simulation with assuming the graphite containing a small concentration of solute hydrogen atoms.  相似文献   

7.
An advanced model for intragranular bubble diffusivity in irradiated UO2 fuel is developed. Three various (surface, volume and gas-phase) mechanisms for the gas-filled bubbles diffusivity are reconsidered. It is shown that the bubble mobility by the volume diffusion mechanism can be strongly enhanced under irradiation conditions. Influence of the two-phase interface kinetics at a bubble surface on the volume diffusion, evaporation/condensation and surface migration mechanisms that can strongly suppress diffusivity of small nanometre bubbles, is additionally studied using a non-linear adsorption law derived for the van-der-Waals gas in the bubbles. The improved model is implemented in the MFPR code and validated against measurements of the small bubbles mobility.  相似文献   

8.
A particular low temperature behaviour of the 131Xe isotope was observed during release studies of fission gases from MOX fuel samples irradiated at 44.5 GWd/tHM. A reproducible release peak, representing 2.7% of the total release of the only 131Xe, was observed at ∼1000 K, the rest of the release curve being essentially identical for all the other xenon isotopes. The integral isotopic composition of the different xenon isotopes is in very good agreement with the inventory calculated using ORIGEN-2. The presence of this particular release is explained by the relation between the thermal diffusion and decay properties of the various iodine radioisotopes decaying all into xenon.  相似文献   

9.
Three full size AlFeNi cladded U3Si2 fuel plates were irradiated in the BR2 reactor of the Belgian Nuclear Research Centre (SCK·CEN) under relatively severe, but well defined conditions. The irradiation was part of the qualification campaign for the fuel to be used in the future Jules Horowitz reactor in Cadarache, France. After the irradiation, the fuel plates were submitted to an extensive post-irradiation campaign in the hot cell laboratory of SCK·CEN. The PIE shows that the fuel plates withstood the irradiation successfully, as no detrimental defects have been found. At the cladding surface, a multilayered corrosion oxide film has formed. The U-Al-Si layer resulting from the interaction between the U3Si2 fuel and the Al matrix, has been quantified as U(Al,Si)4.6. It is found that the composition of the fuel particles is not homogenous; zones of USi and U3Si2 are observed and measured. The fission gas-related bubbles generated in both phases show a different morphology. In the USi fuel, the bubbles are small and numerous while in U3Si2 the bubbles are larger but there are fewer.  相似文献   

10.
A thermochemical model to describe the chemical state of irradiated nuclear fuel has been advanced and validated by comparison to results of experiments on naturally-enriched UO2 with additions of selected simulated fission products. These experiments involved controlled oxidation in Ar/H2O/H2 gas mixtures conducted at the Atomic Energy of Canada Limited-Chalk River Laboratories. A coulombic titration technique provided measurements of moles of oxygen acquired by the samples in relation to oxygen potential. Emphasis was placed on the role of molybdenum in buffering the oxidation of fuel.This treatment is expected to be especially useful when integrated into fuel performance codes that make use of thermodynamics as boundary conditions in heat and mass transfer computations.  相似文献   

11.
The corrosion of spent UO2 fuel in the presence of a dilute suspension (1.5%) of bentonite in synthetic groundwater has been studied. No significant changes in the uranium concentrations no indications of increased corrosion due to changes in solution chemistry, or due to sorption was found when bentonite was introduced to the system. The measured uranium concentrations were (3 ± 2) × 10−6M in the presence as well as in the absence of bentonite. The concentrations of plutonium and cationic fission products in the aqueous phase were lowered considerably, by up to two orders of magnitude in the case of plutonium due to sorption onto the bentonite.  相似文献   

12.
Use of Passive Gamma Scanning for non destructive evaluation of PuO2 content in mixed oxide (MOX) fuels for fast reactors is demonstrated. Experiments have been carried out on MOX fuel pins for the hybrid core of Fast Breeder Test Reactor having nominal PuO2 content of 44% and MOX pins having nominal PuO2 content of 21% for the Prototype Fast Breeder Reactor. A comparison of results obtained using a conventional NaI(Tl) detector and that using a through well shaped detector is also presented.  相似文献   

13.
A technique has been developed for the hot-cell measurement of the apparent density of irradiated UO2 fuel after extraction from a fuel pin. A single determination is accurate to ± 3 % at the 95 % confidence limit. The method has been applied to fuel irradiated in thermal neutron fluxes in the Winfrith SGHWR and in the Halden BWR. Material has been examined at ratings of 1–51 W/g and in the burn-up range 0.09–5.79 × 1020fissions/cm. It is concluded that pellets with peak temperatures below 1100°C densify during irradiation, but at higher temperatures the pellets begin to swell. Fuel micrography has shown that the densification is principally due to the loss of micropores with a temperature dependency given by an activation energy of 5200 cal/mol. Above 1000°C the densification is masked by the formation and growth of intergranular fission gas bubbles, whose volume may exceed that of the manufactured pores which have sintered. In solid fuel pellets central swelling did not balance densification in the cooler rim until the fuel centre temperature exceeded 1700°C.  相似文献   

14.
NHO3氧化去除Np—Pu反萃液中的H2C2O4   总被引:3,自引:1,他引:2  
研究了用NHO3氧化去除TRPO流程反萃Np-Pu的H2C2O4反萃液中H2C2O4的条件。7.5mol.L^-1HNO3-0.3mol.L^-1H2C2O4混合液于90℃下蒸发130h和100℃下蒸馏回流6h,H2C2O4可完全分解去除;混合液中添加适量催化剂MnCO3,于100℃下蒸发或蒸馏回流,H2C2O4分解加速,1-1.5h内H2C2O4完全分解。蒸发或蒸馏回流过程中产生的HNO2把Np  相似文献   

15.
Interaction processes resulting from the transit of incident 2–30 keV H+, H+2 and H+3 through 1.2 to 2.5 μg cm−2 carbon foils are investigated by examining the charge state and angular scatter distributions of atomic and molecular species that exit the foils. A comparison of the scatter distributions of exiting H+2 and H0 from incident H+2 and H+3 show that the atomic components of transmitted molecules scatter independently from foil atoms. For a given foil thickness, the measured fractions of H+2 from incident H+2 and H+3 are inversely proportional to the square of the angular scatter half-width.  相似文献   

16.
The amount of gas at the grain boundaries plays an important role in the fuel transient behaviour during accident conditions, such as a loss-of-coolant accident (LOCA) or a reactivity-initiated accident (RIA). Direct experimental determination of the grain boundary gas inventory has been performed for MOX fuel irradiated in an EDF pressurised water reactor (PWR) using the ADAGIO technique (ADAGIO is a French acronym meaning ‘Discriminatory Analysis of Accumulated Inter-granular and Occluded Gas’). The ADAGIO protocol applied to a MOX MIMAS fuel produced inter-granular gas fraction results that were consistent with those reached with other methods of evaluation i.e. electron probe microanalysis (EPMA). Furthermore, a new methodology for the numerical treatment of 85Kr release kinetics which was developed for UO2 was applied to MOX fuels. The corresponding results evidenced two types of release kinetics. These kinetics were attributed to the inter-granular bubbles of the UO2 matrix and the bubbles located in the restructured zones, i.e. Pu agglomerates.  相似文献   

17.
Uranium plutonium mixed oxide (MOX) containing up to 30% plutonia is the conventional fuel for liquid metal cooled fast breeder reactor (LMFBR). Use of high plutonia (>30%) MOX fuel in LMFBR had been of interest but not pursued. Of late, it has regained importance for faster disposition of plutonium and also for making compact fast reactors. Some of the issues of high plutonia MOX fuels which are of concern are its chemical compatibility with liquid sodium coolant, dimensional stability and low thermal conductivity. Available literature information for MOX fuel is limited to a plutonium content of 30%. Thermodynamic assessment of mixed oxide fuels indicate that with increasing plutonia oxygen potential of the fuel increases and the fuel become more prone to chemical attack by liquid sodium coolant in case of a clad breach. In the present investigation, some of these issues of MOX fuel have been studied to evaluate this fuel for its use in fast reactor. Extensive work on the out-of-pile thermo-physical properties and fuel-coolant chemical compatibility under different simulated reactor conditions has been carried out. Results of these studies were compared with the available literature information on low plutonia MOX fuel and critically analyzed to predict in reactor behaviour of this fuel containing 44% PuO2. The results of these out-of-pile studies have been very encouraging and helped in arriving at a suitable and achievable fuel specification for utilization of this fuel in fast breeder test reactor (FBTR). As a first step of test pin irradiation programme in FBTR, eight subassemblies of the MOX fuel are undergoing irradiation in FBTR.  相似文献   

18.
The creep of UO2 containing small additions of Nb2O5 has been investigated in the stress range 0.5–90 MN/m2 at temperatures between 1422 and 1573 K. The functional dependence of the creep rate of five dopant concentrations up to 0.8 mol% Nb2O5 has been examined and it was established that in all the materials the secondary creep rate could be represented by the equation /.εkT = nexp(?Q/RT), where /.ε is the steady state creep rate per hour, Q the activation energy and A and n are constants for each material. It was observed that Nb2O5 additions can cause a dramatic increase in the steady state creep rate as long as the niobium ion is maintained in the Nb5+ valence state. Material containing 0.4 mol% Nb2O5 creeps three orders of magnitude faster than the pure material.Analysis of the results in terms of grain size compensated viscosity suggest that, like “pure” UO2, the creep rate of Nb2O5 doped fuel is diffusion-controlled and proportional to the reciprocal square of the grain size. A model is developed which suggests that the increase in creep rate results from suppression of the U5+ ion concentration by the addition of Mb5+ ions, which modifies the crystal defect structure and hence the uranium ion diffusion coefficient.  相似文献   

19.
The addition of Th to U-based fuels increases resistance to corrosion due to differences in redox-chemistry and electronic properties between UO2 and ThO2. Quantum-mechanical techniques were used to calculate surface energy trends for ThO2, resulting in (1 1 1) < (1 1 0) < (1 0 0). Adsorption energy trends were calculated for water and oxygen on the stable (1 1 1) surface of UO2 and ThO2, and the effect of model set-up on these trends was evaluated. Molecular water is more stable than dissociated water on both binary oxides. Oxidation rates for atomic oxygen interacting with defect-free UO2(1 1 1) were calculated to be extremely slow if no water is present, but nearly instantaneous if water is present. The semi-conducting nature of UO2 is found to enhance the adsorption of oxygen in the presence of water through changes in near-surface electronic structure; the same effect is not observed on the insulating surface of ThO2.  相似文献   

20.
Conditions of Kinoshita instability development of point defects and dislocation spatial distributions in the crystal structure of UO2 fuel are studied. As a result of the instability development, spatially non-uniform regions with increased dislocation density are formed. Closed-form expressions of instability increment and spatial scale are derived. Parameters of the instability for irradiation conditions of high burnup UO2 fuel are obtained by means of numerical simulation. Instability development time is shown to be inversely proportional to fission rate and it increases as dislocation density decreases. Calculated values of instability spatial scale and increment are in accordance with the size of fine grains and their formation rate in the peripheral zones of high burnup LWR fuel pellets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号