首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews recent research on swift heavy-ion irradiations and high-pressure studies on pyrochlores of the Gd2Zr2−xTixO7 binary [1], [2], [3] and [4]. Applying three complementary analytical techniques (synchrotron X-ray diffraction, Raman spectroscopy and transmission electron microscopy) allowed for the investigation of the response of pyrochlore to irradiation and/or pressure. The chemical composition of pyrochlore has a strong effect on the character and energetics of the type of structural modifications that can be obtained under pressure or irradiation: For Ti-rich pyrochlores, the crystalline-to-amorphous transition is the dominant process. When Zr is substituted for Ti, an order-disorder transformation to the defect-fluorite structure becomes the increasingly dominant process. Except for Gd2Zr2O7, single ion tracks in pyrochlore consist of an amorphous core, surrounded by a crystalline, but disordered, defect-fluorite shell. This shell is surrounded by a defect-rich pyrochlore region. In contrast to similar effects observed when pressure or irradiation are applied separately, the response of the pyrochlore structure is significantly different when it is exposed simultaneously to pressure and irradiation. The combination of relativistic heavy ions with high pressure results in the formation of a new metastable pyrochlore phase. TEM and quantum-mechanical calculations suggest that these novel structural modifications are caused by the formation of nanocrystals and the modified energetics of nanomaterials.  相似文献   

2.
Solubility of ThO2 in gadolinium zirconate pyrochlore, a potential host for radioactive materials, has been investigated. The phase relations in Gd2−xThxZr2O7+x/2 (0.0 ? x ? 2.0) systems have been established under the slow-cooled conditions from 1400 °C. XRD studies reveal that the compositions corresponding to x = 0.0-0.075 are single phasic in nature and beyond x ? 0.1 the biphasic region starts. The first biphasic region comprising of pyrochlore and thoria exist from x = 0.1-0.8, and from x = 1.2 another biphasic region consisting of gadolinia stabilized zirconia (GSZ) and thoria appears which persists till x = 1.6. The end member (i.e. x = 2.0) of the series is found to be a mixture of monoclinic ZrO2 and thoria. Interestingly, gadolinia which has wide solubility in thoria, did not show any miscibility in thoria in the presence of zirconia. Irregular grains of Gd1.8Th0.2Zr2O7.1 as shown in SEM supports its biphasic nature. Raman spectra of heavily thoria doped (x = 0.1 and 0.2) samples, indicates the presence of Zr-O7 mode which implies the samples are highly disordered in nature.  相似文献   

3.
We have recently synthesized “stuffed” (i.e., excess Lu) Lu2(Ti2−xLux)O7−x/2 (x = 0, 0.4 and 0.67) compounds using conventional ceramic processing. X-ray diffraction measurements indicate that stuffing more Lu3+ cations into the oxide structure leads eventually to an order-to-disorder (O-D) transition, from an ordered pyrochlore to a disordered fluorite crystal structure. At the maximum deviation in stoichiometry (x = 0.67), the Lu3+ and Ti4+ ions become completely randomized on the cation sublattices, and the oxygen “vacancies” are randomized on the anion sublattice. Samples were irradiated with 400 keV Ne2+ ions to fluences ranging from 1 × 1015 to 1 × 1016 ions/cm2 at cryogenic temperatures (∼77 K). Ion irradiation effects in these samples were examined by using grazing incident X-ray diffraction. The results show that the ion irradiation tolerance increases with disordering extent in the non-stoichiometric Lu2(Ti2−xLux)O7−x/2.  相似文献   

4.
The modifications of the mechanical properties of related-fluorite oxides (cubic zirconia [c-ZrO2] and pyrochlores [Gd2(Ti1−xZrx)2O7 with x = 0.5 and x = 1]) induced by swift heavy ion irradiation are investigated. Polycrystalline pellets of both materials were irradiated at room temperature with 940 MeV Pb or 870 MeV Xe ions at the GANIL accelerator in Caen at fluences ranging from 2 × 1011 to 1013 cm−2. Residual macroscopic stresses induced by irradiation were determined using X-ray diffraction and the sin2ψ method. The microhardness and the fracture toughness of irradiated samples were studied by Vickers micro-indentation. Amorphization occurs in Gd2TiZrO7 and not in Gd2Zr2O7 and c-ZrO2. The mechanical behavior of materials is found to be closely related to the residual stresses induced in the surface layer by irradiation. Compressive stresses are generated in c-ZrO2 and Gd2TiZrO7 (leading to an increase of fracture toughness), whereas tensile stresses (inducing a large decrease of fracture toughness) are observed in Gd2Zr2O7 due to the lattice contraction related to a pyrochlore fluorite→transition.  相似文献   

5.
Non-leaky planar waveguide structure has been fabricated in x-cut BiB3O6 crystal by 6 MeV C3+ ion implantation at a dose of 1 × 1014 ions/cm2. The effective refractive indices of the waveguide are measured at a wavelength of 632.8 nm. We perform a computer code based on the finite difference method to reconstruct the refractive index profiles of nx and ny of this waveguide. The beam propagation method is used to calculate the electric and magnetic field profiles in the waveguide region from the reconstructed refractive index profiles. Our simulated data show that the refractive index increased waveguide layer can confine the mode completely.  相似文献   

6.
Room temperature ion irradiation damage studies were performed on a ceramic composite intended to emulate a dispersion nuclear fuel. The composite is composed of 90-mole% MgO and 10-mole% HfO2. The as-synthesized composite was found to consist of Mg2Hf5O12 (and some residual HfO2) particles embedded in an MgO matrix. X-ray diffraction revealed that nearly all of the initial HfO2 reacted with some MgO to form Mg2Hf5O12. Ion irradiations were performed using 10 MeV Au3+ ions at room temperature over a fluence range of 5 × 1016-5 × 1020 Au/m2. Irradiated samples were characterized using both grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM), the latter using both selected-area electron diffraction (SAED) and micro-diffraction (μD) on samples prepared in cross-sectional geometry. Both GIXRD and TEM electron diffraction measurements on a specimen irradiated to a fluence of 5 × 1020 Au/cm2, revealed that the initial rhombohedral Mg2Hf5O12 phase was transformed into a cubic-Mg2Hf5O12 phase. Finally, it is important to note that at the highest ion fluence used in this investigation (5 × 1020 Au/m2), both the MgO matrix and the Mg2Hf5O12 second phase remained crystalline.  相似文献   

7.
Structural modifications in the zircon and scheelite phases of ThGeO4 induced by swift heavy ions (93 MeV Ni7+) at different fluences as well as pressure quenching effects are reported. X-ray diffraction and Raman measurements at room temperature on the irradiated zircon phase of ThGeO4 indicate the occurrence of stresses that lead to a reduction of the cell volume up to 2% followed by its transformation to a mixture of nano-crystalline and amorphous scheelite phases. Irradiation of the zircon phase at liquid nitrogen temperature induces amorphization at a lower fluence (7.5 × 1016 ions/m2), as compared to that at room temperature (6 × 1017 ions/m2). Scheelite type ThGeO4 irradiated at room temperature undergoes complete amorphization at a lower fluence of 7.5 × 1016 ions/m2 without any volume reduction. The track radii deduced from X-ray diffraction measurements on room temperature irradiated zircon, scheelite and low temperature irradiated zircon phases of ThGeO4 are, 3.9, 3.5 and 4.5 nm, respectively. X-ray structural investigations on the zircon phase of ThGeO4 recovered after pressurization to about 3.5 and 9 GPa at ambient temperature show the coexistence of zircon and disordered scheelite phases with a larger fraction of scheelite phase occurring at 9 GPa. On the other hand, the scheelite phase quenched from 9 GPa shows crystalline scheelite phase pattern.  相似文献   

8.
The present work explores the potential of Gd2Zr2O7 for incorporation of ThO2 and Al2O3 which are components of Advanced Heavy Water Reactors (AHWR) waste. XRD studies reveal that the compositions corresponding to y from 0.0 to 0.4 in Gd2−yThyZr2−yAlyO7 are single phasic in nature and beyond y > 0.4 the biphasic region starts. The solubility of thoria in Gd2Zr2O7 pyrochlore could be enhanced by more than five times by simultaneous incorporation of alumina. The lattice parameter increases with increase in Th and Al content in the series. The rA/rB ratio increases with increase in Th and Al content in Gd2Zr2O7 and in turn the degree order increases as has been seen by gradual increase in the intensity of superstructure peaks. Single phasic samples were investigated by Raman spectroscopy also. Thermal expansion behavior of single phasic samples was investigated by HT-XRD. In order to confirm the nature of the phases backscattered images have been recorded on all the samples.  相似文献   

9.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

10.
Single-crystalline InP(1 0 0) substrate was implanted by 30 keV Ga+ ions with fluences of 1 × 1016-1.5 × 1017 cm−2 followed by post-annealing treatment at 750 °C to recover implantation-induced structural defects and activate dopants into the lattices. The optical property, composition, and microstructure of the Ga+-implanted InP were studied by Raman spectroscopy and transmission electron microscopy (TEM). Raman spectra show that the InxGa1−xP phase is formed at a critical fluence of 7 × 1016 cm−2. The newly grown phase was identified with the appearance of Ga rich TOInP and In rich TOGaP modes of a random alloy in the 1 bond-2 phonon mode configuration along with TEM structural identification.  相似文献   

11.
Enthalpy increment measurements on La2Te3O9(s) and La2Te4O11(s) were carried out using a Calvet micro-calorimeter. The enthalpy values were analyzed using the non-linear curve fitting method. The dependence of enthalpy increments with temperature was given as: (T) − (298.15 K) (J mol−1) = 360.70T + 0.00409T2 + 133.568 × 105/T − 149 923 (373 ? T (K) ? 936) for La2Te3O9 and (T) − (298.15 K) (J mol−1) = 331.927T + 0.0549T2 + 29.3623 × 105/T − 114 587 (373 ? T (K) ? 936) for La2Te4O11.  相似文献   

12.
Effect of CuO on CaTiO3 (CT) ceramics prepared using a direct sintering process (reaction-sintering process) was investigated. The mixture of raw materials was pressed and sintered into ceramics without any calcination stage involved. Pure CT could be obtained. The degree of densification in CT via reaction-sintering process is lower than traditional oxide route but the grains grew easier in CT via reaction-sintering process. A density 3.63 g/cm3 (90.3% of ρth) is obtained in CT pellets after 1500 °C/16 h sintering. With 3 wt.% CuO addition, density 3.92 g/cm3 (97.5% of ρth) is obtained after 8 h sintering at 1500 °C due to the liquid phase sintering. The liquid phase at grain boundaries appeared significantly at a lower sintering temperature for longer soak time.  相似文献   

13.
The effectiveness of D2-ICR cleaning with a pressure up to 0.18 Pa was surveyed on hot walls of 400-470 K for oxygen removal after oxidation experiment in the HT-7 superconducting tokamak. The oxygen removal rate in D2-ICR cleaning was about (7-9) × 1021 O-atoms/h, about 5-10 times higher that that He-ICR cleanings before and after the D2-ICR cleaning. In about 130 min He-ICR and D2-ICR cleanings, about 8 × 1021 O-atoms were removed. After the cleanup, a lot of water still retained in HT-7 vessel and 67 disruptive plasmas were required before obtaining normal plasma. In present experiment, the recovered plasmas were easily controlled and much better than previous report in HT-7 oxidation experiments.  相似文献   

14.
Magnesium stannate spinel (Mg2SnO4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg2SnO4 was achieved at an ion dose of 5 × 1019 Kr ions/m2 at 50 K and 1020 Kr ions/m2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr2+ ions in Mg2SnO4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg2SnO4 was finally compared with normal spinel MgAl2O4.  相似文献   

15.
A detailed investigation of the surface morphology of the pristine and swift heavy ion (SHI) irradiated La0.7Sr0.3MnO3 (LSMO) thin film using atomic force microscope (AFM) is presented. Highly c-axis oriented LSMO thin films were grown on LaAlO3 (1 0 0) (LAO) substrates by the pulsed laser deposition (PLD) technique. The films were annealed at 800 °C for 12 h in air (pristine films) and subsequently, irradiated with SHI of oxygen and silver. The incident fluence was varied from 1 × 1012 to 1 × 1014 ions/cm2 and 1 × 1011 to 1 × 1012 ions/cm2 for oxygen and silver ions, respectively. X-ray diffraction (XRD) studies reveal that the irradiated films are strained. From the AFM images, various details pertaining to the surface morphology such as rms roughness (σ), the surface rms roughness averaged over an infinite large image (σ), fractal dimension (DF) and the lateral coherence length (ξ) were estimated using the length dependent variance measurements. In case of irradiated films, the surface morphology shows drastic modifications, which is dependent on the nature of ions and the incident fluence. However, the surface is found to remain self-affine in each case. In case of oxygen ion irradiated films both, σ and DF are observed to increase with fluence up to a dose value of 1 × 1013 ions/cm2. With further increase in dose value both σ and DF decreases. In case of silver ion irradiated films, σ and DF decrease with increase in fluence value in the range studied.  相似文献   

16.
The interaction of thermal neutrons with 235U results in fission with a probability of ∼85% and in the formation of 236U (t1/2 = 2.3 × 107 yr) with a probability of ∼15%. While anthropogenic 236U is, therefore, present in spent nuclear fuel at levels of 236U/U up to 10−2, the expected natural ratios in the pre-anthropogenic environment range from 10−14 to 10−10. At VERA, systematic investigations suggest a detection limit below 236U/U = 5 × 10−12 for samples of 0.5 mg U, while chemistry blanks of ∼2 × 107 atoms 236U per sample limit the sensitivity for smaller samples. We have found natural isotopic ratios in uranium reagents separated before the onset of human nuclear activities, in uranium ores from various origins and in water from a subsurface well in Bad Gastein, Austria. Anthropogenic contamination was clearly visible in soil and rivulet samples from Salzburg, Austria, whereas river sediments from Garigliano river (Southern Italy) were close to the detection limit. Finally, our natural in-house standard Vienna-KkU was calibrated against a certified reference material (IRMM REIMEP-18 A).  相似文献   

17.
Irradiation-induced microstructural evolution in uranium-bearing delta-phase oxides of A6U1O12 (A = rare earth cations) were characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Polycrystalline Y6U1O12, Gd6U1O12, Ho6U1O12, Yb6U1O12, and Lu6U1O12 samples were irradiated with 300 keV Kr++ to a fluence of 2 × 1020 ions/m2 at cryogenic temperature (∼100 K). The crystal structure of these compounds was determined to be an ordered, fluorite derivative structure, known as the delta-phase, a rhombohedral symmetry belonging to space group . Experimental results indicate that all these compounds are resistant to amorphization to a displacement damage dose of ∼60 displacements per atom. In these experiments, we sometimes observed an irradiation-induced order-to-disorder phase transformation, from an ordered rhombohedral to a disordered fluorite structure.  相似文献   

18.
Silicon nitride layers of 140 nm thickness were deposited on silicon wafers by low pressure chemical vapour deposition (LPCVD) and irradiated at GANIL with Pb ions of 110 MeV up to a maximum fluence of 4 × 1013 cm−2. As shown in a previous work these irradiation conditions, characterized by a predominant electronic slowing-down (Se = 19.3 keV nm−1), lead to damage creation and formation of etchable tracks in Si3N4. In the present study we investigated other radiation-induced effects like out of plane swelling and refractive index decrease. From profilometry, step heights as large as 50 nm were measured for samples irradiated at the highest fluences (>1013 cm−2). From optical spectroscopy, the minimum reflectivity of the target is shifted towards the high wavelengths at increasing fluences. These results evidence a concomitant decrease of density and refractive index in irradiated Si3N4. Additional measurements, performed by ellipsometry, are in full agreement with this interpretation.  相似文献   

19.
Au nanoislet targets ( 2-60 nm) were bombarded by 200 keV polyatomic ions (40 keV/atom), which deposit their energy mainly in the nuclear stopping mode: ∑(dE/dx)n = 30 keV/nm and ∑(dE/dx)e = 2 keV/nm. The matter desorbed in the form of nanoclusters was registered by TEM. The total transfer of matter was determined by neutron-activation analysis. The total yield of the ejected gold reached high values of up to 2.6 × 104 atoms per Au5 ion. The major part (2 × 104 atoms per ion Au5) of the emission is in the form of nanoclusters. The results are compared with the data of similar experiments with 1 MeV Au5 (200 keV/atom) and other projectiles. The analysis of the experimental data and the comparison to molecular-dynamics simulation results of the desorption process show that the desorption of Au nanoislets is induced by their melting, build-up of pressure and thermal expansion.  相似文献   

20.
The thermal conductivities of (U,Pu,Np)O2 solid solutions were studied at temperatures from 900 to 1770 K. Thermal conductivities were obtained from the thermal diffusivity measured by the laser flash method. The thermal conductivities obtained below 1400 K were analyzed with the data of (U,Pu,Am)O2 obtained previously, assuming that the B-value was constant, and could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(z1, z2) = 3.583 × 10−1 × z1 + 6.317 × 10−2 × z2 + 1.595 × 10−2 (m K/W) and B = 2.493 × 10−4 (m/W), where z1 and z2 are the contents of Am- and Np-oxides. It was found that the A-values increased linearly with increasing Np- and Am-oxide contents slightly, and the effect of Np-oxide content on A-values was smaller than that of Am-oxide content. The results obtained from the theoretical calculation based on the classical phonon transport model showed good agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号