首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive-inspired ball-milling is proposed as a new production route for oxide dispersion strengthened (ODS) steels. So a Fe-14Cr-2W-1Ti-0.8Y-0.2O (wt.%) ODS steel is elaborated by ball-milling of FeCrWTi and YFe3 plus Fe2O3 powders instead of Y2O3 and then by annealing at 800 °C for 5 min. Characterizations by Electron Probe MicroAnalysis and Atom Probe Tomography (APT) are performed after milling and after annealing. For the very first time, nanoclusters are observed after ball-milling by APT. Those nanoclusters are enriched in titanium, yttrium and oxygen and their mean radius is 0.8 nm. With annealing, the mean radius rises up to 1.4 nm and the number density as well as the enrichment factor in O, Ti and Y increase. So a new formation mechanism of nanoclusters is observed in those conditions of synthesis: ball-milling initiates the nanoclusters nucleation and during annealing, nucleation continues, accompanied by a slight growth of nanoclusters. Thus reactive-inspired ball-milling appears as a promising route for synthesizing ODS steels with a fine and dense dispersion of oxides.  相似文献   

2.
ODS (oxide dispersion strengthened) alloys have superior creep properties. As it is well known, these excellent creep properties result from very fine oxide particles dispersed with the matrix. However, there is no common understanding about the nature of the very small oxide particles. Two hypotheses arise from the literature, 1: non-stoichiometric Y-, Ti-, O-enriched clusters and 2: stoichiometric Y2Ti2O7. In this work, both chemically extracted residue method and extraction replica method were applied to the commercial ODS ferritic alloy, MA957. These samples were then observed using XRD (X-ray diffractometry) and FEG-STEM (field emission gun-scanning transmission electron microscopy) with EDS (energy dispersive X-ray spectrometer). From the results, it was concluded that the composition of small particles is related to the particle size. They exhibit at least two types of phase, 1: non-stoichiometric Y-, Ti-, O-enriched clusters from ∼2 to ∼15 nm (Y/Ti < 1) and 2: stoichiometric Y2Ti2O7 from ∼15 to ∼35 nm. Based on the result, it is suggested that the appropriate increase of titanium content compared to yttrium content in oxide particles by modifying the chemical compositions of ODS alloys could be an effective way to obtain a finer dispersion of oxide particles.  相似文献   

3.
Using results of density functional theory (DFT) calculations the first attempt towards the understanding of Y2O3 particles formation in oxide dispersed strengthened (ODS) ferritic-martensitic steels was performed. The present work includes modeling of single defects (O impurity atom, Fe vacancy and Y substitute atom), interaction between substituted Y atoms, Y-Fe vacancy pairs and oxygen impurity atoms in the iron matrix. The calculations have showed the repulsive interaction between the two Y substitute atoms at any separation distances that might mean that the oxygen atoms or O atoms with vacancies are required to form binding between atoms in the yttrium oxide nanoclusters.  相似文献   

4.
Oxide dispersion strengthened (ODS) ferritic/martensitic (F/M) steels are promising materials for high temperature applications. The hardening limits from room temperature to 1000 °C of one of such steel, ODS EUROFER97, together with the impact of the material production steps, are investigated at a microstructural level by coupling hardness, tensile tests and transmission microscopy, including in situ heating experiments. The oxides, ytttria and complex yttrium titanium oxides, reinforce the material by forming more or less stable obstacles to dislocations, and by promoting grain refinement by pinning grain boundaries. It appears that part of the yttrium titanium oxides particles dissolves from about 600 °C while pure yttria particles are stable at least to 1000 °C in the steel. The concurrent roles of the oxides and the dislocation structure in the hardening are rationalized using the dispersion barrier hardening model. It appears that hardening due to dislocations can overcome the one due to oxides but is more sensitive to temperature than the one due to oxides, and that the main limiting factor is the thermal stability of the oxides.  相似文献   

5.
The thermoluminescence (TL) response of Dy and Li doped 20CaB4O7-80CaB2O4 (wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB4O7-80CaB2O4:Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter.  相似文献   

6.
Nano-structured ferritic alloys, which are prepared almost exclusively via the mechanical alloying of Y2O3, have recently attracted much attention. Our preliminary results show that the usage of Fe2O3 as oxygen source leads to better control of powder properties than Y2O3 and a high density of nanometer-sized oxide particles can be formed by atomic mixing of Y, Ti and O. This may provide a new route with reduced costs and improved reproducibility for industrial production of nanometer-sized oxide strengthened steels.  相似文献   

7.
Ion irradiation damage effects in delta (δ) Y6U1O12 were characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Experimental results revealed no amorphization transformation occurs in Kr-ion irradiated Y6U1O12 to a maximum displacement damage dose of ∼50 displacements per atom at cryogenic temperature. Density functional theory calculations indicate that δ-Y6U1O12 possesses a relatively low cation antisite formation energy, which may help to explain the observed resistance of δ-Y6U1O12 to irradiation-induced amorphization of δ-Y6U1O12.  相似文献   

8.
Some fuel pin cladding made from a ferritic steel reinforced by titanium and yttrium oxides were irradiated in the French experimental reactor Phénix. Microstructural examination of this alloy indicates that oxides undergo dissolution under irradiation. This irradiation shows the influence of dose and, in a smaller part, of temperature. In order to better understand the mechanisms of dissolution, three ferritic steels reinforced by Y2O3 or MgO were irradiated with different charged particles. Inelastic interactions induced by 1 MeV He ion irradiation do not lead to any modification, neither in their chemical composition, nor in their spatial and size distribution. In contrast, isolated Frenkel pairs created by electron irradiation lead to significant oxide dissolution with a radius decrease proportional to the dose. Moreover, the comparison between irradiation with ions (displacements cascades) and electrons (Frenkel pairs only) shows the importance of free point defects in the dissolution phenomena.  相似文献   

9.
Based on a serial of ab initio calculations, we studied various F-type color centers in Y-Al-O system material: α-Al2O3, Y2O3, Y3Al5O12 (YAG), YAlO3 (YAP). The local atomic structures and formation energy of various color centers are calculated and discussed among the above four oxides. The stability of various color centers in Y-Al-O material is analysed. Our results show that the neutral F-center needs the largest formation energy while, +2 charged F2+-center needs the lowest formation energy in each of studied oxides. Same type of color center in α-Al2O3 needs the lowest formation energy, while needs the largest energy in YAG. And more, in all four oxides, the F2+-center is relatively stable than other two species.  相似文献   

10.
Different ODS EUROFER steels reinforced with Y2O3 and MgAl2O4 were elaborated by mechanical milling and hot isostatic pressing. Good compromise between strength and ductility could be obtained but the impact properties remain low (especially for the Y2O3 ODS steel). The materials were structurally characterized at each step of the elaboration. During milling, the martensite laths of the steel are transformed into nano-metric ferritic grains and the Y2O3 oxides dissolve (but not the MgAl2O4 spinels). After the HIP, all the ODS steels remain ferritic with micrometric grains, surrounded by nano-metric grains for the Y2O3 ODS steels. The mechanisms in the Y2O3 ODS steels are complex: the Y2O3 oxides re-precipitate as nano-Y2O3 particles that impede a complete austenitization during the HIP. The quenchability of the ODS steels is modified by the milling process, the oxide nature and the oxide content. Eventually, the advantages and drawbacks of each oxide type are discussed.  相似文献   

11.
Polycrystalline Y6W1O12 samples were irradiated with 280 keV Kr2+ ions to fluences up to 2 × 1020 ions/m2 at cryogenic temperature (100 K). Ion irradiation damage effects in these samples were examined using grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The pristine Y6W1O12 possesses rhombohedral symmetry (structure known as the δ-phase), which is closely related to cubic fluorite structure. GIXRD and TEM observations revealed that the irradiated Y6W1O12 experiences an ordered rhombohedral to disordered cubic fluorite transformation by a displacement damage dose of ∼12 displacements per atom (dpa). At the highest experimental dose of ∼50 dpa, the uppermost irradiated region was found to be partially amorphous while the buried damage region was found to contain the same fluorite structure as observed at lower dose.  相似文献   

12.
Room temperature ion irradiation damage studies were performed on a ceramic composite intended to emulate a dispersion nuclear fuel. The composite is composed of 90-mole% MgO and 10-mole% HfO2. The as-synthesized composite was found to consist of Mg2Hf5O12 (and some residual HfO2) particles embedded in an MgO matrix. X-ray diffraction revealed that nearly all of the initial HfO2 reacted with some MgO to form Mg2Hf5O12. Ion irradiations were performed using 10 MeV Au3+ ions at room temperature over a fluence range of 5 × 1016-5 × 1020 Au/m2. Irradiated samples were characterized using both grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM), the latter using both selected-area electron diffraction (SAED) and micro-diffraction (μD) on samples prepared in cross-sectional geometry. Both GIXRD and TEM electron diffraction measurements on a specimen irradiated to a fluence of 5 × 1020 Au/cm2, revealed that the initial rhombohedral Mg2Hf5O12 phase was transformed into a cubic-Mg2Hf5O12 phase. Finally, it is important to note that at the highest ion fluence used in this investigation (5 × 1020 Au/m2), both the MgO matrix and the Mg2Hf5O12 second phase remained crystalline.  相似文献   

13.
The structure and elastic property of nanosized complex oxide particles in a ferritic/martensitic alloy containing titanium and silicon were studied by transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The nanosized complex Y-Si-O particles were found in the matrix of the alloy in addition to Y-Ti-O, and the size of Y-Si-O is smaller than that of Y-Ti-O particles. The formation of Y2.16Si1.76O7 and Y2.15Ti1.95O7 were further confirmed by O K, Si L2,3 and Ti L2,3 edges, respectively. The bulk modulus of Y2.16Si1.76O7 was shown to be lower than that of Y2.15Ti1.95O7, which implies that the nanosized Y2.16Si1.76O7 particles would provide more effective dislocation pinning at elevated temperatures.  相似文献   

14.
Zirconia sphere particles were synthesized through the gelation process of Na-alginate, and cermet (ZrO2-Mo) pellets were fabricated under several conditions. In this process, a zirconia slurry was prepared by mixing oxide powders (ZrO2, Y2O3, Er2O3, CeO2), distilled water and Na-alginate, and subsequently dropped into CaCl2 solution. As a result, zirconia sphere particles coated with a gelled film were synthesized. The slurry density (zirconia content in slurry) of 30-64 wt.% and Na-alginate concentration of a few% were good for gelation for up to 10 wt.% CaCl2 solution. Sphere particles with smaller diameter were obtained by dropping slurry with a mechanical vibration. The prolongation of the ball milling time for mixture of oxide powders was effective to increase the sintered density of zirconia sphere particles, especially for higher CeO2 concentration. The dense cermet pellets were fabricated for max. 50% volume ratio of zirconia phase for Mo matrix using zirconia particles covered with Mo powder by a rotating granulation method.  相似文献   

15.
This paper reports phases identified in samples of crud (activated corrosion products) from two commercial boiling-water reactors using transmission and analytical electron microscopy and selected-area electron diffraction. Franklinite (ZnFe2O4) was observed in both samples. Hematite (α-Fe2O3), crystalline silica (SiO2), a fine-grained mixture of iron oxides probably including magnetite (Fe3O4), hematite (α-Fe2O3), and goethite (α-FeOOH), and an unidentified high-Ba, high-S phase were observed in one of the samples. Willemite (Zn2SiO4), amorphous silica, and an unidentified iron-chromium phase were observed in the other. Chloride-bearing phases were found in both samples, and are assumed to represent sample contaminants. Because of the small sample volumes and numbers of particles studied and the possibility of contamination, it is not clear whether the differences between the phases observed in the two crud samples represent actual differences in the assemblages formed in the reactors.  相似文献   

16.
SiC fiber-reinforced SiC matrix composites (SiCf/SiC) are considered as one of the candidates for blanket materials in future fusion reactors and as an advanced fuel cladding material for next-generation fission reactors. Generally, the densification of SiC needs sintering additives and oxides such as Al2O3, Y2O3, and yttrium-aluminum garnet (YAG, Y3Al5O12), which are frequently added to SiC. However, the effects of neutron irradiation on sintering additives are still unclear. In this study, we performed the neutron irradiation of Al2O3, Y2O3, and YAG at fluences up to 2.0–2.5 × 1024 n/m2 (E > 0.1 MeV) at 60–90 °C. The isochronal recovery of the macroscopic volume of Al2O3 against annealing temperature showed smooth and continuous shrinkage at a temperature of up to 1200 °C, and the volume slightly increased above that temperature. In contrast, the volume of Y2O3 showed quick shrinkage at the low temperature range, and slower and smooth recovery was observed up to ~1100 °C. In the case of YAG, the recovery of volume occurred in a step-wise manner at 600–750 °C, and continuous shrinkage occurred at temperatures lower and higher than that temperature range. The activation energies for the macroscopic volume recoveries of three oxides were obtained from the Arrhenius plots of the rate coefficients. Two-stage recovery was observed for Al2O3, whereas more complicated recovery processes were suggested for Y2O3 and YAG.  相似文献   

17.
In the present work, liquid phase sintered SiC (LPS-SiC) was proposed as an inert matrix for the particle dispersed inert matrix fuel (IMF). The fuel particles containing plutonium and minor actinides were substituted with pure yttria stabilized zirconia beads. The LPS-SiC matrix was produced from the initial mixtures prepared using submicron sized α-SiC powder and oxide additives Al2O3, Y2O3 in the amount of 10 wt.% with the molar ratio 1Y2O3/1Al2O3. Powder mixtures were sintered using two sintering methods; namely conventional high temperature sintering and novel spark plasma sintering at different temperatures depending on the method applied in order to obtain dense samples. The phase reaction products were identified using X-ray diffraction (XRD) and microstructures were investigated using light microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) techniques. The influence of powder mixing methods, sintering temperatures, pressures applied and holding time on the density of the obtained pellets was investigated. The samples sintered by slow conventional sintering show lower relative density and more pronounced interaction between the fuel particles and matrix in comparison with those obtained with the fast spark plasma sintering method.  相似文献   

18.
Nano-crystalline W-1%Y2O3 (wt.%) powder was produced by a modified solution chemical reaction of ammonium paratungstate (APT) and yttrium nitrate. The precursor powder was found to consist of particles of bimodal morphology i.e. large APT-like particles up to 20 μm and rectangular yttrium containing ultrafine plates. After thermal processing tungsten crystals were evolved from W-O-Y plate like particles. spark plasma sintering (SPS) was used to consolidate the powder at 1100 and 1200 °C for different holding times in order to optimize the sintering conditions to yield high density but with reduced grain growth. Dispersion of yttrium oxide enhanced the sinterability of W powder with respect to lanthanum oxide. W-1%Y2O3 composites with sub-micron grain size showed improved density and mechanical properties as compared to W-La2O3 composites. Sample sintered in two steps showed improved density, due to longer holding time at lower temperature (900 °C) and less grain growth due to shorter holding time at higher temperature i.e. 1 min at 1100 °C.  相似文献   

19.
Vitrification has been selected in France as the process for immobilizing high-level waste arising from spent fuel reprocessing. Some high-level solutions generated by reprocessing legacy fuel contain high molybdenum concentrations. Molybdenum is known to be sparingly soluble in conventional borosilicate glass, and work is in progress to find suitable glass formulations for such waste. The results of a basic study to identify borosilicate glasses composition zones of potential interest are discussed. A vast composition range was investigated by defining a fine mesh. The limits considered to delimit the range of the study were intentionally extended to identify formulations such as SiO2-B2O3-Al2O3-Na2O-P2O5 that are of interest for vitrifying molybdenum-rich waste. Observation of more than 50 tested mixtures revealed two composition zones of potential interest. One forms a homogeneous glass after melting at 1300 °C and rapid cooling; the other vitreous material comprises unconnected microbeads uniformly dispersed in a borosilicate glass.  相似文献   

20.
The oxidation of iron and chromium that are present as impurities in zirconium metal or as alloying elements in Zircaloy-4 was investigated with PhotoElectroChemical techniques (PEC), highlighting the chemical nature, the size and the lateral distribution of Fe and Cr-containing phases in thin zirconia scales formed during the oxidation of pure zirconium and Zircaloy-4 at 470 °C in oxygen. In the case of zirconium, iron and chromium impurities led to the formation of oxides distributed in a homogeneous way in the zirconia scale, while in the case of Zircaloy-4 these elements, present in the form of intermetallic particles in the substrate, led to the formation of localised haematite Fe2O3, rhomboedric solid solution (FexCr1−x)2O3 and chromia Cr2O3 phases. These phases were accurately studied via the measurement of their respective band-gap (Fe2O3: 2.2 eV, (FexCr1−x)2O3: 2.6 eV and Cr2O3: 3.0 eV). It is concluded that PEC techniques represent a sensitive and powerful way to locally analyse the various semiconductor phases in the oxide scale at a micron scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号