首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recombination behaviors of cation and anion Frenkel pairs have been investigated in four fluorite structure compounds: Li2O, CaF2, CeO2 and UO2. The calculations have been done in the framework of empirical potentials molecular dynamics simulations. They have revealed that the recombination processes are strongly dependent on the configuration (i.e. the sublattice, the distance between the Frenkel pairs and the local topology of the interstitials). Each configuration shows the same recombination process whatever the chemistry (i.e. for the four compounds Li2O, CaF2, CeO2 and UO2), such that the recombination processes are related to the crystal structure of the materials. Two different recombination regimes have been identified: either spontaneous (i.e. temperature independent) or thermally activated. The recombinations are direct or occur through replacement sequences.  相似文献   

2.
The behaviour of caesium in nuclear fuels is investigated using density functional theory (DFT). In a first step, the incorporation and solution energies of Cs in pre-existing trap sites of UO2 (vacancies, interstitials, U-O di-vacancy and Schottky trio defects) are calculated using the projector-augmented-wave (PAW) derived pseudopotentials as implemented in the Vienna ab initio simulation package (VASP). Correlation effects are taken into account within the DFT + U approach. The solubility of caesium is found to be very low, in agreement with experimental data. The migration of Cs is found to be highly anisotropic, it is controlled by uranium diffusion with an Arrhenius activation energy of 4.8 eV in hyperstoichiometric UO2+x, in good agreement with experimental values.  相似文献   

3.
Classical molecular dynamics simulations have been carried out to study the primary damage due to α-decay self-irradiations in single-, bi-, and poly-crystal UO2 matrices. In all the cases no amorphization has been found, only the creation of few point defects is observed. However, in all grain boundary systems numerous point defects are created along the interfaces. Furthermore, cascade morphologies depend strongly on the grain boundary structure. For symmetrical tilt grain boundaries with small misorientation angles (lower than 20°) the structure at the grain boundaries is composed of edge dislocations, whereas for higher misorientation angles is formed by Schottky defects. The grain boundary structure in the poly-crystal is found to be highly disordered. For the last two systems, cascades seem stopped by the interfaces unlike those with edge dislocation grain boundaries. These types of interface act like sink which traps moving atoms.  相似文献   

4.
The diffusion properties of He and Xe in UO2 have been investigated, using density-functional calculations employing the projector-augmented-wave (PAW) method and the generalized gradient approximation (GGA). The migration energies corresponding to both interstitial and vacancy-assisted mechanisms have been calculated and the results for the two noble gas atoms are compared with each other. We suggest that He likely diffuses by hopping through a single vacancy with computed low migration energies smaller than 0.79 eV and its diffusivity is much higher than that of Xe. Xe has a quite large migration energy compared to He; the strain energy plays a key role in Xe diffusion in UO2.  相似文献   

5.
Irradiation of graphite, commonly used in nuclear power plants, is known to produce structural damage. Here, experimental and computational methods are used to study defect formation in graphite during Ar irradiation at incident energies of 50 eV. The experimental samples are analyzed with scanning tunneling microscopy to quantify the size distribution of the defects that form. The computational approach is classical molecular dynamic simulations that illustrate the mechanisms by which the defects are produced. The results indicate that defects in graphite grow in concentrated areas and are nucleated by the presence of existing defects.  相似文献   

6.
Using molecular-dynamics simulation, we study the cluster-induced sputtering of a diatomic (O2) and a triatomic (H2O) molecular target and compare it to the sputtering of an atomic target (Ar). In all three systems, sputtering occurs by the flow of gasified material out of the spike volume into the vacuum above it. Above a threshold, the sputter yield and also the number of dissociations and reactions increase linearly with the total impact energy. The number of reactions occurring is significantly higher than the number of surviving dissociations. The degrees of freedom of the sputtered molecules are not in thermal equilibrium with each other. While for the diatomic target, the internal energy amounts to only 10-20% of the translational energy, it is 40% for H2O. The translational energy distributions of sputtered monomers are strongly reduced at high energies due to molecule dissociations.  相似文献   

7.
In order to study the radiation effects in BaTiO3 ferroelectric crystal, a previously developed shell model is modified. The modifications include adding the ZBL universal potentials at short distances and distance-dependent spring constants for core-shell interactions. The phase transition sequences in BaTiO3 were correctly reproduced using molecular dynamics simulations with this modified shell model. Also, the calculated Frenkel pair formation energies agree well with results obtained by first principles calculations, which suggests that this model is suitable for the simulation of the radiation effects in BaTiO3. The dependence of polarization on the number of oxygen vacancies was also studied.  相似文献   

8.
Positron annihilation spectroscopy (PAS) and a computer simulation were used to investigate a defect production in reactor pressure vessel (RPV) steels irradiated by neutrons. The RPV steels were irradiated at 250 °C in a high-flux advanced neutron application reactor. The PAS results showed that mainly single vacancies were created to a great extent as a result of a neutron irradiation. Formation of vacancies in the irradiated materials was also confirmed by a coincidence Doppler broadening measurement. For estimating the concentration of the point defects in the RPV steels, we applied computer simulation methods, including molecular dynamics (MD) simulation and point defect kinetics model calculation. MD simulations of displacement cascades in pure Fe were performed with a 4.7 keV primary knock-on atom to obtain the parameters related to displacement cascades. Then, we employed the point defect kinetics model to calculate the concentration of the point defects. By combining the positron trapping rate from the PAS measurement and the calculated vacancy concentrations, the trapping coefficient for the vacancies in the RPV steels was determined, which was about 0.97 × 1015 s−1. The application of two techniques, PAS and computer simulation, provided complementary information on radiation-induced defect production.  相似文献   

9.
In this study, 3D simulations based on a theoretical model were developed to investigate radiation-induced nanostructure formation in amorphous materials. Model variables include vacancy production and recombination rates, ion sputtering effects, and redeposition of sputtered atoms. In addition, a phase field model was developed to predict vacancy diffusion as a function of free energies of mixing and interfacial energies. The distribution profile of the vacancy production rate along the depth of an irradiated matrix was considered as a near Gaussian approximation according to Monte-Carlo TRIM code calculations. Dynamic processes responsible for nanostructure evolution were simulated by updating the vacancy concentration profile over time. Simulated morphologies include cellular nanoholes, nanowalls, nanovoids, and nanofibers, with the resultant morphology dependant upon the incident ion species and ion fluence. These simulated morphologies are consistent with experimental observations achieved under comparable experimental conditions. Our model provides a distinct numerical approach to accurately predicting morphological results for ion-irradiation-induced nanostructures.  相似文献   

10.
The purpose of this study is to investigate the modes of vibration of the self-interstitial atoms and the vacancy in bcc iron and to estimate how the vibrational properties can affect the stability of these defects. The phonon density of states of the vacancy and the self-interstitials have been calculated within the quasi harmonic approximation using density functional theory calculations. It was observed that self-interstitial atoms have several localized high frequency modes of vibration related to the stretching of the dumbbell bond, but also soft modes favoring their migration. From the phonon density of states, the vibrational contributions to the free energy have been estimated for finite temperatures. Results are compared to previous work performed by others using empirical potentials. We found a rather large formation entropy for the vacancy, kB. Our results show that the vibrational entropy can have a significant influence on the formation of the point defects even at moderate temperature. Possible consequences on the mobility of these defects are also discussed.  相似文献   

11.
A methodology for including electronic effects in classical radiation damage simulations is presented. The method is used to calculate the number of residual defects for low energy (10 keV) cascades in Fe, as a function of the electron-phonon coupling strength. It was found that strong electron-phonon coupling reduced the number of residual defects by rapidly removing energy from the cascade and reducing the thermal spike. Intermediate coupling increased the number of defects by quenching the thermal spike and reducing defect recombination. Thermostatting the cascade with the local, time dependent electronic temperature, rather than the ambient temperature, reduced the number of residual defects by enhancing defect recombination. Swift heavy ion irradiation in tungsten was modeled using the same methodology. In this case we found that the number of residual defects created by a given electronic stopping power was strongly dependent on the temperature variation of the electronic heat capacity. In contrast to cascade simulations, the interstitials were located closer to the core of the ion track than the vacancies.  相似文献   

12.
High-temperature fissile-fueled cermet literature was reviewed. Data are presented primarily for the W-UO2 as this was the system most frequently studied; other reviewed systems include cermets with Mo, Re, or alloys as a matrix. Failure mechanisms for the cermets are typically degradation of mechanical integrity and loss of fuel. Mechanical failure can occur through stresses produced from dissimilar expansion coefficients, voids created from diffusion of dissimilar materials or formation of metal hydride and subsequent volume expansion. Fuel loss failure can occur by high temperature surface vaporization or by vaporization after loss of mechanical integrity. Techniques found to aid in retaining fuel include the use of coatings around UO2 fuel particles, use of oxide stabilizers in the UO2, minimizing grain sizes in the metal matrix, minimizing impurities, controlling the cermet sintering atmosphere, and cladding around the cermet.  相似文献   

13.
The theory of radiation damage in metallic materials predicts that under cascade-irradiation conditions the voids should approach a steady state, which is characterised by a maximum mean void size. It is shown in this paper that the steady-state concentrations of voids of different size are described by the Gaussian distribution with the maximum size mentioned above to be the most probable value. The evolution of voids towards the steady state is analysed.  相似文献   

14.
The thermal conductivities of single crystal and polycrystalline UO2 are calculated using molecular dynamics simulations, with interatomic interactions described by two different potential models. For single crystals, the calculated thermal conductivities are found to be strongly dependent on the size of the simulation cell. However, a scaling analysis shows that the two models predict essentially identical values for the thermal conductivity for infinite system sizes. By contrast, simulations with the two potentials for identical fine polycrystalline structures yield estimated thermal conductivities that differ by a factor of two. We analyze the origin of this difference.  相似文献   

15.
The damage accumulation in ion-implanted semiconductors is analysed using Rutherford backscattering spectrometry (RBS). When energetic ions are implanted in a material, they transfer their energy mainly into atomic collision processes (nuclear energy loss) and in electronic excitations (electronic energy loss). For a given material this primary energy deposition is determined by the mass and energy of the implanted ions and the ion fluence (number of ions per unit area). However, the damage concentration which is measured after implantation does not only depend on the primary energy deposition, but is strongly influenced by secondary effects like defect annealing and defect transformation. For the latter processes the target temperature and the ion flux (number of ions per unit area and time) play an important role. In this presentation the influence of the various parameters mentioned above on the damage accumulation is demonstrated for various materials. Simple empirical models are applied to get information about the processes occurring and to systematize the results for the various semiconductors.  相似文献   

16.
A set of devices was developed in order to infuse UO2 disks with helium, at high temperature and pressure, to measure the helium infused quantity and from these data to calculate the helium solubility in the UO2 matrix. Samples of UO2 single crystal and UO2 polycrystal were infused at a temperature of 1473 and 1743 K in a helium atmosphere ranging between 50 and 100 MPa. These samples were then annealed and the helium released was measured with a mass spectrometer. From the obtained spectra it was possible to give an interpretation of the helium release mechanism and to calculate its solubility in the UO2 lattice in these specific thermodynamic conditions. Additionally to the helium solubility measurement from infused samples, a 37 years old sample of 238PuO2, retrieved from an old 242Cm radioisotope thermoelectric generator (RTG), containing radiogenic helium, was also measured to widen perspectives of this kind of measurements to damaged sample more representative of spent fuel.  相似文献   

17.
The thermal conductivity of uranium dioxide in the temperature range of 300–2400 K was estimated by non-equilibrium molecular dynamics calculation using Fourier law.The Kawamura function was adopted as the interatomic potential function.The calculated thermal conductivities are found to be strongly dependent on the temperature of the simulation cube.The thermal conductivity simulation results are compared with the experiment results and agreed well with the experimental results when the temperature is above 600 K.The thermal conductivities scale effects are found to be existed in uranium dioxide nanometer thin film.The approximate mean free paths of phonons in different temperatures can be examined.  相似文献   

18.
By means of molecular dynamics simulations using bond-order potential (BOP), we have investigated the interactions between carbon (C) atoms and bcc tungsten (W). At finite temperature (T = 300 K) with incident energy of C atoms ranging from 0.5 to 100 eV at normal incidence, the projected range distribution as a function of incident energy and the average depth have been depicted. The properties of vacancy, vacancy migration, interstitial and substitutional C atoms in W have been determined. The most stable configuration for an interstitial C atom in W is in octahedral position and the lattice distortion around the C atom in octahedral interstitial configuration occurs along 〈1 0 0〉 and 〈1 1 0〉 directions. The mutual interaction between a vacancy and near interstitial C atom is also studied.  相似文献   

19.
Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 1014 to 9 × 1016 cm−2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p0)17O, 16O(d,p1)17O and 12C(d,p0)13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 1016 cm−2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.  相似文献   

20.
MeV Au irradiation leads to a shape change of polystyrene (PS) and SiO2 particles from spherical to ellipsoidal, with an aspect ratio that can be precisely controlled by the ion fluence. Sub-micrometer PS and SiO2 particles were deposited on copper substrates and irradiated with Au ions at 230 K, using an ion energy and fluence ranging from 2 to 10 MeV and 1 × 1014 ions/cm2 to 1 × 1015 ions/cm2. The mechanisms of anisotropic deformation of PS and SiO2 particles are different because of their distinct physical and chemical properties. At the start of irradiation, the volume of PS particles decrease, then the aspect ratio increases with fluence, whereas for SiO2 particles the volume remains constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号