首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melting behavior of MgO-based inert matrix fuels containing (Pu,Am)O2−x ((Pu,Am)O2−x-MgO fuels) was experimentally investigated. Heat-treatment tests were carried out at 2173 K, 2373 K and 2573 K each. The fuel melted at about 2573 K in the eutectic reaction of the Pu-Am-Mg-O system. The (Pu,Am)O2−x grains, MgO grains and pores grew with increasing temperature. In addition, Am-rich oxide phases were formed in the (Pu,Am)O2−x phase by heat-treatment at high temperatures. The melting behavior was compared with behaviors of PuO2−x-MgO and AmO2−x-MgO fuels.  相似文献   

2.
The dependence of the oxygen potentials on oxygen non-stoichiometry and temperature of Am0.5Pu0.5O2−x has been obtained by the electromotive force (EMF) method with the cell: (Pt) air |Zr(Ca)O2−x| Am0.5Pu0.5O2−x (Pt). The x value of Am0.5Pu0.5O2−x was changed at 1333 K over 0.02 < x ? 0.25 by the coulomb titration method. The temperature dependence of the oxygen potential was also measured over the range of 1173-1333 K. It was found that the oxygen potential decreased from −80 to −360 kJ mol−1 with increasing x from 0.021 to 0.22 at 1333 K and that it remained almost constant at −360 kJmol−1 around x = 0.23. It was concluded that Am0.5Pu0.5O2−x should be composed of the single fluorite-type phase over 0.02 < x ? 0.22 and the mixed phases of fluorite-type and (Am, Pu)9O16 at around x = 0.23.  相似文献   

3.
The thermal conductivities of (U0.68Pu0.30Am0.02)O2.00−x solid solutions (x = 0.00-0.08) were studied at temperatures from 900 to 1773 K. The thermal conductivities were obtained from the thermal diffusivities measured by the laser flash method. The thermal conductivities obtained experimentally up to about 1400 K could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(x) = 3.31 × x + 9.92 × 10−3 (mK/W) and B(x) = (−6.68 × x + 2.46) × 10−4 (m/W). The experimental A values showed a good agreement with theoretical predictions, but the experimental B values showed not so good agreement with the theoretical ones in the low O/M ratio region. From the comparison of A and B values obtained in this study with the ones of (U,Pu)O2−x obtained by Duriez et al. [C. Duriez, J.P. Alessandri, T. Gervais, Y. Philipponneau, J. Nucl. Mater. 277 (2000) 143], the addition of Am into (U, Pu)O2−x gave no significant effect on the O/M dependency of A and B values.  相似文献   

4.
Three kinds of defect solid solution GdxZr1−xO2−x/2 with 0.18 ? x ? 0.62, including the three single crystal samples with x = 0.21, 0.26 and 0.30, were investigated by 155Gd Mössbauer spectroscopy at 12 K. Difference in the structural characteristic under longer term annealing were confirmed by comparing the 155Gd Mössbauer parameters of the polycrystalline samples sintered one time and twice at 1773 K for 16 h in air, respectively. The results indicated that the polycrystalline samples sintered twice have relatively equilibrated structure by comparing with the three single crystal samples. After being sintered twice, basically the local structure around the Gd3+ ions does not change, but the degree of the displacements of the six 48f oxygen ions from positions of cubic symmetry becomes slightly smaller, and distribution of the Gd3+ ions in the system becomes more homogeneous.  相似文献   

5.
This study describes the synthesis and the characterisation of Pu1−xAmxO2 (x = 0.2; 0.5; 0.8) mixed oxides obtained by oxalate co-conversion. We studied the self-irradiation effect in these compounds at the structural scale. We determined, for each composition, the initial lattice parameter and the equation describing its variation versus time and displacements per atom. Similarly to other α emitting compounds, it was observed a fast lattice parameter expansion rate, followed by a stabilisation at a maximum value. The observations also showed that the initial expansion rate varies according to the Am content and the maximum value to the Pu content. However, for all compositions, the lattice parameter relative variations are the same.  相似文献   

6.
The solid solutions of (U1−zy’−yPuzAmyNpy)O2−x (z = 0-1, y’ = 0-0.12, y” = 0-0.07) were investigated by X-ray diffraction measurements, and a database for the lattice parameters was updated. A model to calculate the lattice parameters was derived from the database. The radii of the ions present in the fluorite structure of (U, Pu, Am, Np)O2−x were estimated from the lattice parameters measured in this work. The model represented the experimental data within a standard deviation of σ = ±0.025%.  相似文献   

7.
(U, Pu) mixed oxides, (U1−yPuy)O2−x, with y = 0.21 and 0.28 are being considered as fuels for the Prototype Fast Breeder Reactor (PFBR) in India. The use of urania-plutonia solid solutions in PFBR calls for accurate measurement of physicochemical properties of these materials. Hence, in the present study, oxygen potentials of (U1−yPuy)O2−x, with y = 0.21 and 0.28 were measured over the temperature range 1073-1473 K covering an oxygen potential range of −550 to −300 kJ mol−1 (O/M ratio from 1.96 to 2.000) by employing a H2/H2O gas equilibration technique followed by solid electrolyte EMFmeasurement. (U1−yPuy)O2−x, with y = 0.40 is being used in the Fast Breeder Test Reactor (FBTR) in India to test the behaviour of fuels with high plutonium content. However, data on the oxygen potential as well as thermal conductivity of the mixed oxides with high plutonium content are scanty. Hence, the thermal diffusivity of (U1−yPuy)O2, with y = 0.21, 0.28 and 0.40 was measured and the results of the measurements are reported.  相似文献   

8.
The oxygen potential of (U0.88Pu0.12)Ox (−0.0119 < x < 0.0408) and (U0.7Pu0.3)Ox (−0.0363 < x < 0.0288) was measured at high temperatures of 1673-1873 K using gas equilibrium method with thermo gravimeter. The measured data were analyzed by a defect chemistry model. Expressions were derived to represent the oxygen potential based on defect chemistry as functions of temperature and oxygen-to-metal ratio. The thermodynamic data, and , at stoichiometric composition were obtained. The expressions can be used for in situ determination of the oxygen-to-metal ratio by the gas-equilibration method. The calculation results were consistent with measured data. It was estimated that addition of 1 wt.% Pu content increased oxygen potential of uranium and plutonium mixed oxide by 2-5 kJ/mol.  相似文献   

9.
We have recently synthesized “stuffed” (i.e., excess Lu) Lu2(Ti2−xLux)O7−x/2 (x = 0, 0.4 and 0.67) compounds using conventional ceramic processing. X-ray diffraction measurements indicate that stuffing more Lu3+ cations into the oxide structure leads eventually to an order-to-disorder (O-D) transition, from an ordered pyrochlore to a disordered fluorite crystal structure. At the maximum deviation in stoichiometry (x = 0.67), the Lu3+ and Ti4+ ions become completely randomized on the cation sublattices, and the oxygen “vacancies” are randomized on the anion sublattice. Samples were irradiated with 400 keV Ne2+ ions to fluences ranging from 1 × 1015 to 1 × 1016 ions/cm2 at cryogenic temperatures (∼77 K). Ion irradiation effects in these samples were examined by using grazing incident X-ray diffraction. The results show that the ion irradiation tolerance increases with disordering extent in the non-stoichiometric Lu2(Ti2−xLux)O7−x/2.  相似文献   

10.
Stoichiometries in (U0.7Pu0.3)Ox and (U0.8Pu0.2)Ox were analyzed with the experimental data of oxygen potential based on point defect chemistry. The relationship between the deviation x of stoichiometric composition and the oxygen partial pressure PO2 was evaluated using a Kröger-Vink diagram. The concentrations of the point defects in uranium and plutonium mixed oxide (MOX) were estimated from the measurement data of oxygen potentials as functions of temperature and PO2. The analysis results showed that x was proportional to near the stoichiometric region of both (U0.7Pu0.3)Ox and (U0.8Pu0.2)Ox, which suggested that intrinsic ionization was the dominant defect. A model to calculate oxygen potential was derived and it represented the experimental data accurately. Further, the model estimated the thermodynamic data, and , of stoichiometric (U0.7Pu0.3)O2.00 and (U0.8Pu0.2)O2.00 as −552.5 kJ·mol−1 and −149.7 J·mol−1, and −674.0 kJ · mol-1 and −219.4 J · mol−1, respectively.  相似文献   

11.
The effects of a powder treatment, the sintering temperature and the sintering time on the grain growth of UO2 pellets were investigated in air to obtain UO2 pellets with large grains. Air could be used for sintering because an oxidation path above 1803 K does not pass through a two-phase (UO2+x + U3O8−z) region. The UO2 pellets sintered by the CO2-air-CO2-H2 process consisted of a single grain or some large grains in the order of several millimeters.  相似文献   

12.
The sintering behaviour of (U0.45Pu0.55)C pellets has been studied up to 1700 °C using a dilatometer in Ar-8%H2 atmosphere. The mechanism for the initial stage of sintering was determined using rate controlled sintering technique and was found to be volume diffusion. The activation energy for the initial stages of sintering was found to be 360 kJ/mol for Ar-8%H2 atmosphere.  相似文献   

13.
Oxygen non-stoichiometry in (Th0.7Ce0.3)O2−x oxide solid solutions was investigated from the viewpoint of Ce reduction. The oxygen non-stoichiometry was experimentally determined by means of thermogravimetric analysis as a function of oxygen potential at 1173, 1273 and 1373 K. Features of the isotherms of oxygen non-stoichiometry in (Th0.7Ce0.3)O2−x similar to those in oxygen non-stoichiometric actinide and lanthanide dioxides were observed. The oxygen non-stoichiometry in (Th0.7Ce0.3)O2−x was compared with those of CeO2−x and (U0.7Ce0.3)O2−x. It was concluded that the Ce reduction has some relation to defect forms and their transformations in the solid solutions.  相似文献   

14.
The high plutonium, hypo-stoichiometric fuel exists as two phase system at low temperatures. The partial phase diagram of (U,Pu)O2−x with two coexisting cubic phases was extensively investigated in this work using theoretical models. The critical temperature of the miscibility gap varies with Pu/M and O/M of the system. Based on the similar miscibility gap behaviour observed in PuO2−x system and the experimental data available on the phase boundaries of (U,Pu)O2−x for various Pu/M, some semi-empirical relationships and solution models were developed. With the help of these relationships, ternary isothermal sections of the miscibility gap, O/M at different temperatures and the critical temperature of the miscibility gap of (U,Pu)2−x for different Pu/M values were calculated. These calculated values were compared with the available literature data.  相似文献   

15.
Solid state reactions of UO2 and ZrO2 in mild oxidizing condition followed by reduction at 1673 K showed enhanced solubility up to 35 mol% of zirconium in UO2 forming cubic fluorite type ZryU1−yO2 solid solution. The lattice parameters and O/M (M = U + Zr) ratios of the solid solutions, ZryU1−yO2+x, prepared in different gas streams were investigated. The lattice parameters of these solid solutions were expressed as a linear equation of x and y: a0 (nm) = 0.54704 − 0.021x - 0.030y. The oxidation of these solid solutions for 0.1 ? y ? 0.2 resulted in cubic phase MO2+x up to700 K and single orthorhombic zirconium substituted α-U3O8 phase at 1000 K. The kinetics of oxidation of ZryU1−yO2 in air for y = 0-0.35 were also studied using thermogravimetry. The specific heat capacities of ZryU1−yO2 (y = 0-0.35) were measured using heat flux differential scanning calorimetry in the temperature range of 334-860 K.  相似文献   

16.
Leaching experiments were performed on UO2 pellets doped with alpha-emitters (238/239Pu) and on spent fuel, in the presence of an external gamma irradiation source (A60Co = 260 Ci,  Gy h−1). The effects of α, β, γ radiation, the fuel chemistry and the nature of the cover gas (aerated or Ar + 4%H2) on water radiolysis and on oxidizing dissolution of the UO2 matrix are quantified and discussed. For the doped UO2 pellets, the nature of the cover gas clearly has a major role in the effect of gamma radiolysis. The uranium dissolution rate in an aerated medium is 83 mg m−2 d−1 compared with only 6 mg m−2 d−1 in Ar + 4%H2. The rate drop is accompanied by a reduction of about four orders of magnitude in the hydrogen peroxide concentrations in the homogeneous solution. The uranium dissolution rates also underestimate the matrix alteration rate because of major precipitation phenomena at the UO2 pellet surface. The presence of studtite in particular was demonstrated in aerated media; this is consistent with the measured H2O2 concentrations (1.2 × 10−4 mol L−1). For spent fuel, the presence of fission products (Cs and Sr), matrix alteration tracers, allowed us to determine the alteration rates under external gamma irradiation. The fission product release rates were higher by a factor of 5-10 than those of the actinides (80-90% of the actinides precipitated on the surface of the fragments) and also depended to a large extent on the nature of the cover gas. No significant effect of the fuel chemistry compared with UO2 was observed on uranium dissolution and H2O2 production in the presence of the 60Co source in aerated conditions. Conversely, in Ar + 4%H2 the fuel self-irradiation field cannot be disregarded since the H2O2 concentrations drop by only three orders of magnitude compared with UO2.  相似文献   

17.
18.
The thermal conductivity, Young’s modulus, and hardness of (U0.65−xCe0.3Pr0.05Ndx)O2 (x = 0.01, 0.08, 0.12) were evaluated and the effect of Pr and Nd addition on the properties of (U, Ce)O2 were studied. The polycrystalline high-density pellets were prepared with solid state reactions of UO2, CeO2, Pr2O3, and Nd2O3. We confirmed that all Ce, Pr, and Nd dissolved in UO2 and formed solid solutions of (U, Ce, Pr, Nd)O2. We revealed that the thermal conductivity of (U0.65−xCe0.3Pr0.05Ndx)O2 (x = 0.12) was up to 25% lower than that of x = 0.01 at room temperature. The Young’s modulus of (U0.65−xCe0.3Pr0.05Ndx)O2 decreased with x, whereas the hardness values were constant in the investigated x range.  相似文献   

19.
A fuel irradiation program is being conducted using the experimental fast reactor ‘Joyo’. Two short-term irradiation tests in the program were completed in 2006 using a uranium and plutonium mixed oxide fuel which contains minor actinides (MA-MOX fuel). The objective of the tests is the investigation of early thermal behavior of MA-MOX fuel such as fuel restructuring and redistribution of minor actinides. Three fuel pins which contained MA-MOX: 2% neptunium and 2% americium doped uranium plutonium mixed oxide (Am,Pu,Np,U)O2−x fuel were supplied for testing. The first test was conducted with high-linear heating rate of approximately 430 W cm−1 for only 10 min. After the first test, one fuel pin was removed for examinations. Then the second test was conducted with the remaining two pins at nearly the same linear power for 24 h. In these tests, two oxygen-to-metal molar ratios were used for fuel pellets as a test parameter. Non-destructive and destructive post-irradiation examinations results are discussed with early on the behavior of the fuel during irradiation.  相似文献   

20.
The shrinkage of (U0.8, Pu0.2)O2±x pellets was investigated with the help of a thermal dilatometer in isothermal and isochronal heating tests. During shrinkage measurements in isothermal heating, the oxygen-to-metal ratio of the pellets was maintained at a constant value by controlling the oxygen potential in the sintering atmosphere. The influence of the oxygen-to-metal ratio on the sintering behavior was evaluated from the measurement results. Mainly two mechanisms dominated the sintering of mixed oxide pellets. When the oxygen-to-metal ratio was close to the stoichiometric composition, pellet shrinkage progressed at low temperatures of 1200-1600 K, and the shrinkage rate of the pellets drastically changed with a small deviation from stoichiometric composition. The result showed that a diffusion process was dominated during the sintering of near-stoichiometric compositions. On the other hand, the sintering of reduced mixed oxide pellet proceeded at high temperatures of 1600-1900 K, and the shrinkage rate was very low as compared with stoichiometric mixed oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号