首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A continuously stirred flow-through tank reactor has been developed and successfully used to determine rates of dissolution of powdered samples of uranium dioxide at pressure and temperature conditions above the ambient values. The experiments have been performed in a temperature range from 20 to 50 °C and a total hydraulic pressure ranging from 1 to 32 bar. Experiments have been performed in a test solution containing 10−4 mol/L of H2O2, 3 × 10−3 mol/L of NaHCO3 and, finally, NaClO4 to get a constant ionic strength of 0.1 mol/L. An empirical equation has been obtained that describes the results in the experimental range studied and gives a good concordance with values obtained at ambient conditions in other works. On the other hand, scanning electron microscopy (SEM) has shown that the solid surface has homogeneously reacted, and, in addition, no secondary solid phase has been formed on the UO2 surface.  相似文献   

2.
Due to their low absorption cross-section for neutrons, Zr alloys are used for reactor core components. The terminal solid solubility (TSS) for hydrogen in these alloys is very low - in Zr-2.5 wt% Nb, used to fabricate pressure tubes for CANDU (CANDU-CANada Deuterium Uranium is a registered trademark of Atomic Energy of Canada Ltd.) power reactors, the TSS is ∼0.7 at.% H at 300 °C. The mechanical properties of the components may deteriorate when their hydrogen concentration exceeds TSS. Therefore, accurate values of the TSS are needed to assess the operating and end-of-life behaviours of these components. Differential scanning calorimetry (DSC) is used to measure the TSS of hydrogen in Zr alloys. Three distinct features are marked on a typical DSC heat flow curve when the material is being heated and the hydrides are dissolving; ‘peak temperature’, ‘maximum slope temperature’ and ‘completion temperature’. Usually, the maximum slope temperature, being about the average of the three temperatures, is interpreted as the TSS temperature for hydride dissolution (TTSSD). A set of coordinated DSC and neutron diffraction measurements have been carried out to identify the features of the heat flow signal that closely correspond to the TTSSD. Neutron diffraction was chosen because hydrides generate distinctive diffraction peaks whose intensities approach zero at the transition temperature - an unambiguous indication of dissolution. Neutron diffraction shows that the temperature of hydride dissolution correlates closely with the DSC peak temperature.  相似文献   

3.
Yttria stabilised zirconia (YSZ) inert matrix fuel (IMF) fabricated at PSI and irradiated 3 years in the Halden Material Test Reactor (HBWR) since 2000, has been examined by Electron Probe Microanalysis (EPMA) and Secondary Ion Mass Spectroscopy (SIMS) after irradiation and compared with data gained for the unirradiated material. The examined pellet cross-section was estimated to have an equivalent burn-up of 22 MW d kg−1. EPMA measurements demonstrate that the burn-up was rather flat over more than the half pellet radius. A Pu consumption of about 2.5 wt% has been measured with a higher rate in the fuel border zone. The high fuel temperature is responsible for a certain homogenisation of the mineral phases in the fuel centre region whereas the border zone has remained rather with an as-fabricated phase distribution. The central part was also characterised by a dense porosity distribution as well as a temperature and relocation driven depletion of the volatile fission products Xe and Cs. In addition, SIMS has been realised on the same specimen in order to determine the semi-quantitative distribution of different isotopes in the pellet.  相似文献   

4.
The kinetic aspects of allotropic phase changes in uranium are studied as a function of heating/cooling rate in the range 100-102 K min−1 by isochronal differential scanning calorimetry. The transformation arrest temperatures revealed a remarkable degree of sensitivity to variations of heating and cooling rate, and this is especially more so for the transformation finish (Tf) temperatures. The results obtained for the α  β and β  γ transformations during heating confirm to the standard Kolmogorov-Johnson-Mehl-Avrami (KJMA) model for a nucleation and growth mediated process. The apparent activation energy Qeff for the overall transformation showed a mild increase with increasing heating rate. In fact, the heating rate normalised Arrhenius rate constant, k/β reveals a smooth power law decay with increasing heating rate (β). For the α  β phase change, the observed DSC peak profile for slower heating rates contained a distinct shoulder like feature, which however is absent in the corresponding profiles found for higher heating rates. The kinetics of γ  β phase change on the other hand, is best described by the two-parameter Koistinen-Marburger empirical relation for the martensitic transformation.  相似文献   

5.
Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned.Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm−3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix (d = 0.253 g cm−3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix.The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying the matrix components by using prompt gamma-rays following neutron capture. The method aims to refine the value of the adequate calibration coefficient used for ANI analysis.This paper presents the final results obtained for 118 l waste drums with low α-activity and low density. This paper discusses the experimental and modelling studies and describes the development of correction abacuses based on gamma-ray spectrometry signals.  相似文献   

6.
One of the key aspects in designing Spanish spent nuclear fuel canister for geological repository is selecting the inner material to be placed between the steel walls and the fuel assemblies. This material has to primarily avoid the possibility of a criticality event once the canister gets breached by corrosion and flooded by groundwater. A detailed set of requirements for a material to fulfil this role in that environment have been devised and presented in this paper. With these requirements in view, eight potentially interesting candidates were evaluated: cast iron or steel, borosilicate glass, spinel, depleted uranium, dehydrated zeolites, haematite, phosphates, and olivine. Among these, the first four materials or their families are found promising for this application.  相似文献   

7.
Sorption of Th(IV) onto two-line ferrihydrite and magnetite in NaClO4 solutions has been studied as a function of pH and ionic strength revealing that sorption onto both solids increases with pH while it is independent on ionic strength. Sorption capacity of both solids is high, the maximum sorption (almost 100% of Th(IV)) occurs at pH higher than 3.5 for ferrihydrite, and higher than 3.0 for magnetite. Sorption variation with pH was modeled with three different models using the FITEQL 4.0 code: non-electrostatic model, constant capacitance model, and diffuse-double layer model. In all cases, good fit to the experimental data is obtained with one-species: a corner-sharing bidentate-mononuclear surface complex, (FeO)2Th2+, which coincides with the surface complex postulated on these solids surface in previous spectroscopic studies; however, the monodentate species FeOThOH2+ also gives a satisfactory fit. Under the experimental conditions of the present study, any effect of possible thorium colloid formation is negligible.  相似文献   

8.
The fuel rod performance and neutronics of enhanced thermal conductivity oxide (ECO) nuclear fuel with BeO have been compared to those of standard UO2 fuel. The standards of comparison were that the ECO fuel should have the same infinite neutron-multiplication factor kinf at end of life and provide the same energy extraction per fuel assembly over its lifetime. The BeO displaces some uranium, so equivalence with standard UO2 fuel was obtained by increasing the burnup and slightly increasing the enrichment. The COPERNIC fuel rod performance code was adapted to account for the effect of BeO on thermal properties. The materials considered were standard UO2, UO2 with 4.0 vol.% BeO, and UO2 with 9.6 vol.% BeO. The smaller amount of BeO was assumed to provide increases in thermal conductivity of 0, 5, or 10%, whereas the larger amount was assumed to provide an increase of 50%. A significant improvement in performance was seen, as evidenced by reduced temperatures, internal rod pressures, and fission gas release, even with modest (5-10%) increases in thermal conductivity. The benefits increased monotonically with increasing thermal conductivity. Improvements in LOCA initialization performance were also seen. A neutronic calculation considered a transition from standard UO2 fuel to ECO fuel. The calculation indicated that only a small increase in enrichment is required to maintain the kinf at end of life. The smallness of the change was attributed to the neutron-multiplication reaction of Be with fast neutrons and the moderating effect of BeO. Adoption of ECO fuel was predicted to provide a net reduction in uranium cost. Requirements for industrial hygiene were found to be comparable to those for processing of UO2.  相似文献   

9.
The thermodynamic basis for controlling oxygen level in lead-bismuth to prevent steel corrosion and coolant contamination is examined. The operational conditions, including the thermodynamic activity of oxygen, cover gas oxygen partial pressure, mixtures of H2 and H2O (steam) to obtain such low oxygen partial pressure (<10−24 atm or around 10−6 wt% in lead-bismuth), and the voltage signals of one type of oxygen sensors (with a solid electrolyte and molten bismuth reference electrode) are calculated. These results provide the guidance to implement the oxygen control technique.  相似文献   

10.
This paper presents comparison of two methods for the determination of 55Fe activity of waste waters discharged from the Krsko nuclear power plant (KNPP). Research was conducted on 12 composite samples of waste water collected in the waste monitor tank (WMT) during each month as well as on Analytics, Inc. cross-check sample. Results showed that the complicated and time-consuming method proposed by the Environmental Measurements Laboratory (EML) could be successfully replaced with a simple and fast based on the extraction of 55Fe from waste water by non-specific chelating agent ammonium-pyrrolidinedithiocarbamate (APDC) at pH 4 after separation from cobalt, and activity measurement by X-ray fluorescence spectroscopy (XRS). Results obtained by the XRS method were approximately 8.6% lower than those obtained by liquid scintillation spectrometer (LSC). The mean deviation of the XRS results from the activity of cross-check sample was 2.47%, which ensures that this method is accurate enough for environmental monitoring.  相似文献   

11.
The present work proposes applying polyurethane coatings as an additional barrier in the design of Canadian nuclear waste disposal containers. The goal of the present research is to investigate the physico-mechanical integrity of a natural castor oil-based polyurethane (COPU) to be used as a coating material in pH-radiation-temperature environments. As the first part to these inquiries, the present paper investigates the effect of a mixed radiation field supplied by a SLOWPOKE-2 nuclear research reactor on COPUs that differ only by their isocyanate structure. FTIR, DSC, DMA, WAXS, and MALDI are used to characterize the changes that occur as a result of radiation and to relate these changes to polymer structure and composition. The COPUs used in the present work have demonstrated sustained physico-mechanical properties up to accumulated doses of 2.0 MGy and are therefore suitable for end-uses in radiation environments such as those expected in the deep geological repository.  相似文献   

12.
The influence of the oxide layer morphology on the hydrogen uptake during steam oxidation of (Zr,Sn) and Zr-Nb nuclear fuel rod cladding alloys was investigated in isothermal separate-effect tests and large-scale fuel rod bundle simulation experiments. From both it can be concluded that the concentration of hydrogen in the remaining metal strongly depends on the existence of tangential cracks in the oxide layers formed by the tetragonal - monoclinic phase transition in the oxide, known as breakaway effect. In these cracks hydrogen is strongly enriched. It results in very local high hydrogen partial pressure at the oxide/metal interface and in an increase of the hydrogen concentration in the metal at local regions where such cracks in the oxide layer exist. Due to this effect the hydrogen uptake of the remaining zirconium alloy does not depend monotonically on temperature. Differences between (Zr,Sn) and Zr-Nb alloys are caused by differences in the hydrogen production due to different oxidation kinetics and in the crack forming phase transformation in the oxides as well as in the mechanical stability of the oxides.  相似文献   

13.
Fuel for the very high temperature reactor is required to be used under severer irradiation conditions and higher operational reactor temperatures than those of present high temperature gas cooled reactors. Japan Atomic Energy Agency has developed zirconium carbide (ZrC)-coated fuel particles previously in laboratory scale which are expected to maintain their integrity at higher temperatures and burnup conditions than conventional silicon carbide-coated fuel particles. As one of the important R&D items, ZrC coating process development has been started in the year 2004 to determine the coating conditions to fabricate uniform structure of ZrC layers by using a new large-scale coater up to 0.2 kg batch. It was thought that excess carbon formed in the ZrC layer under the oscillation of coating temperature would cause non-uniformity of the ZrC layer. Finally, uniform ZrC coating layer has been fabricated successfully by adjusting the time constant of the coater and keeping the coating temperature at around 1400 °C.  相似文献   

14.
A new method for the quantitative determination of the total xenon concentration in irradiated nuclear fuel is presented. The SIMS measurement of xenon enables the detection of the gas filling bubbles which are not detected with EPMA. The quantification is achieved using the EPMA data as reference at position where no or nearly no bubbles are detected. A new approach using the complementary information given by EPMA, SEM and SIMS is proposed, it opens new horizons for the characterisation of fission gases in irradiated nuclear fuel.  相似文献   

15.
Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging 13C solid state NMR spectra imply limited sample degradation with increasing radiation.  相似文献   

16.
The analysis of two-modulator generalized ellipsometry microscope (2-MGEM) data to extract information on the optical anisotropy of coated particle fuel layers is discussed. Using a high resolution modification to the 2-MGEM, it is possible to obtain generalized ellipsometry images of coating layer cross-sections with a pixel size of 2.5 μm and an optical resolution of ∼4 μm. The most important parameter that can be extracted from these ellipsometry images is the diattenuation, which can be directly related to the optical anisotropy factor (OAF or OPTAF) used in previous characterization studies of tristructural isotropic (TRISO) coated particles. Because high resolution images can be obtained, the data for each coating layer contains >6000 points, allowing considerable statistical analysis. This analysis has revealed that the diattenuation of the inner pyrocarbon (IPyC) and outer pyrocarbon (OPyC) coatings varies significantly throughout the layer. The 2-MGEM data can also be used to determine the principal axis angle of the pyrocarbon layers, which is nearly perpendicular to the TRISO radius (i.e., growth direction) and corresponds to the average orientation of the graphene planes.  相似文献   

17.
The general idea of this work is to introduce an evaluation method to restore the irradiation parameters of graphite or other carbonaceous materials using experimental and modelling results of 13C generation in the irradiated material. The method is based on coupling of stable isotope ratio mass spectrometry and computer modelling of the reactor core to evaluate the realistic characteristics of the reactor core such as the neutron fluence in any position of the reactor graphite stack or other graphite constructions.The generation of carbon isotopes 13C and 14C in the irradiated graphite of the RBMK-1500 reactor has been estimated by modelling of the reactor core with computer codes MCNPX and CINDER90. Good agreement of simulated and measured Δ13C/12C values in graphite of the central part of the reactor core indicates that the neutron flux (1.40 × 1014 n/cm2 s) is modelled accurately in the graphite sleeve of the fuel channel. The simulated activity of 14C is compared with the one measured by the β spectrometry technique. Results indicate that production of 14C from 14N in the RBMK-1500 reactor is considerable and has to be taken into account in order to make proper evaluation of 14C activity. Measured 14C specific activity values correspond to 15 ± 4 ppm impurity of 14N in graphite samples from the RBMK-1500 reactor core.  相似文献   

18.
The addition of Th to U-based fuels increases resistance to corrosion due to differences in redox-chemistry and electronic properties between UO2 and ThO2. Quantum-mechanical techniques were used to calculate surface energy trends for ThO2, resulting in (1 1 1) < (1 1 0) < (1 0 0). Adsorption energy trends were calculated for water and oxygen on the stable (1 1 1) surface of UO2 and ThO2, and the effect of model set-up on these trends was evaluated. Molecular water is more stable than dissociated water on both binary oxides. Oxidation rates for atomic oxygen interacting with defect-free UO2(1 1 1) were calculated to be extremely slow if no water is present, but nearly instantaneous if water is present. The semi-conducting nature of UO2 is found to enhance the adsorption of oxygen in the presence of water through changes in near-surface electronic structure; the same effect is not observed on the insulating surface of ThO2.  相似文献   

19.
The corrosion of the simulated high level waste glass GP WAK1 in synthetic clay pore solution was studied in batch-type experiments at 323 and 363 K with special focus on the effect of high carbonate concentration in solution. The corrosion rate after 130 days was <10−4 g m−2 d−1 - no significant effect of the carbonate was identified. During glass corrosion, crystalline secondary phases (powellite, barite, calcite, anhydrite and clay-like Mg(Ca,Fe)-silicates) were formed. To obtain a molecular level picture of radionuclide speciation within the alteration layer, spectroscopic methods have been applied including grazing incidence X-ray absorption spectroscopy (XAS) to study the structural changes in the coordination of uranyl upon alteration layer formation. The number of equatorial oxygen atoms increases from 4 in the bulk glass to 5 in the alteration layer. Furthermore, reduced coordination symmetry was found. Hectorite, a frequently observed secondary clay mineral within the glass alteration layer, was synthesized in the presence of trivalent f-elements (e.g. Eu) and structurally characterized using time-resolved laser fluorescence spectroscopy. Structural incorporation into the octahedral layer is indicated.  相似文献   

20.
The thermal conductivity of nuclear fuels such as UO2+x and (U,Pu)O2−x has been calculated by the molecular dynamics (MD) simulation in terms of oxygen stoichiometric parameter x, temperature and Pu content. In the present study, the MD calculations were carried out in both equilibrium (EMD) and nonequilibrium (NEMD) systems. In the EMD simulation, the thermal conductivity was defined as the time-integral of the correlation function of heat fluxes according to the Green-Kubo relationship. Meanwhile, in the homogeneous NEMD, it was given by the ratio of the time-averaged heat flux to the perturbed external force subjected to each particle in the simulated cell. NEMD, as compared with EMD, gave somewhat precise results efficiently. Furthermore, both MD calculations showed that the thermal conductivity of these oxide fuels decreased with increase of temperature and defects, i.e. excess oxygen or vacancy, and was rather insensitive to Pu content for the stoichiometric fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号