首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion product deposits formed over long periods of time could exert a considerable influence on the corrosion rate of used nuclear fuel under permanent disposal conditions. To simulate the build up of such deposits, the oxidative dissolution of UO2 (nuclear fuel) has been studied under constant current conditions in sodium chloride (pH = 9.5) solutions containing silicate. Currents in the range 1-300 nA cm−2 (normalized to the geometric area of the electrode surface) were applied in an attempt to simulate rates as close as experimentally feasible to those anticipated under disposal conditions. The deposits were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. At high currents (?20 nA cm−2) very high potentials (∼0.5 V vs. SCE) were achieved and surface deposits were formed at localized sites on the electrode surface. Raman analyses indicated that these deposits were hydrated uranyl silicates. Their localization was shown to be due to the formation of acidified sites on an otherwise passive surface as a consequence of uranyl ion hydrolysis underneath the deposit. At these sites the local current density was considerably higher than the nominally applied current density. The fraction of the surface covered by a deposit increased as the applied current decreased, leading to a decrease in the extent of acidification. Measurements as a function of applied current density established a potential of ∼0.25 V (vs. SCE) as a threshold below which acidification did not occur despite the formation of a deposit. When the current was reduced to 1-2 nA cm−2, the potential (∼0.11 V (vs. SCE)) approached the range of corrosion potentials measured in aerated solutions. These values are well below the threshold potential. Since the maximum corrosion current densities anticipated under actual disposal conditions are <1 nA cm−2, the prospects for acidification leading to enhanced corrosion and radionuclide release rates are very remote.  相似文献   

2.
The analysis of two-modulator generalized ellipsometry microscope (2-MGEM) data to extract information on the optical anisotropy of coated particle fuel layers is discussed. Using a high resolution modification to the 2-MGEM, it is possible to obtain generalized ellipsometry images of coating layer cross-sections with a pixel size of 2.5 μm and an optical resolution of ∼4 μm. The most important parameter that can be extracted from these ellipsometry images is the diattenuation, which can be directly related to the optical anisotropy factor (OAF or OPTAF) used in previous characterization studies of tristructural isotropic (TRISO) coated particles. Because high resolution images can be obtained, the data for each coating layer contains >6000 points, allowing considerable statistical analysis. This analysis has revealed that the diattenuation of the inner pyrocarbon (IPyC) and outer pyrocarbon (OPyC) coatings varies significantly throughout the layer. The 2-MGEM data can also be used to determine the principal axis angle of the pyrocarbon layers, which is nearly perpendicular to the TRISO radius (i.e., growth direction) and corresponds to the average orientation of the graphene planes.  相似文献   

3.
Polymer electrolyte fuel cell (PEFC) membranes based on thin film of crosslinked perfluorinated polymer-alloys (RX-FA) have been fabricated by soft electron beam (soft-EB) grafting with styrene monomers using soft-EB irradiation under nitrogen atmosphere at room temperature (RT). The characteristic properties of styrene-grafted materials (GRX-FA) and sulfonated materials (SRX-FA) have been measured by differential scanning calorimetry (DSC) and FT-IR spectroscopy, ionic conductivity and so on. The glass transition temperatures (dry state) of all obtained SRX-FA were about 105 ± 1 °C, which are higher than Nafion®. The ion exchange capacities of SRX-FA have been achieved about 3.3 meq/g (dry). The ionic conductivity of obtained SRX-FA has showed about 0.17 S/cm at 60 °C with relative humidity (RH) of ∼95%. The ionic conductivities of the obtained SRX-FA were higher than that of conventional perfluoro-sulfonic acid membranes (PFSA). Fabricated membrane electrode assemblies (MEAs) based on the obtained SRX-FA have shown encouraging performance in the PEFC, compared with the conventional PFSA. The power density of obtained MEAs based on the SRX-FA was about 330-340 mW/cm2 under 500 mA/cm2 at 60 °C operation. Moreover, the maximum power densities of obtained MEAs based on the SRX-FA shows about 630 mW/cm2 at 60 °C. On the other hand, the power density at 500 mA/cm2 and maximum power density of MEA based on Nafion®112 were about 320 and 590 mW/cm2 at 60 °C. Thus, the power density of the obtained SRX-FA was higher than that of conventional PFSA.  相似文献   

4.
Among ceramics, alumina is being widely used as biomaterials now these days. It is being used as hip joints, tooth roots etc. Ion implantation has been employed to modify its surface without changing it bulk properties. 30 keV nitrogen with varying ion dose ranging from 5 × 1015 ions/cm2 to 5 × 1017 ions/cm2 is implanted in alumina. Surface morphology has been studied with optical microscope and atomic force microscope (AFM). Improvement in brittleness has been observed with the increase in ion dose. Compound formation and changes in grain size have been studied using X-Ray diffraction (XRD). AlN compound formation is also observed by Fourier transform infrared spectroscopy (FTIR). The change in the grain size is related with the nanohardness and Hall-Petch relationship is verified.  相似文献   

5.
The D(p,p)D cross-sections for elastic scattering of proton on deuterium over incident proton energy range from 1.8 to 3.2 MeV at both laboratory angles of 155° and 165° were measured. A thin solid state target Ni/TiDx/Ta/Al used for cross-section measurement was fabricated by firstly depositing layers of Ta, Ti and Ni film on the Al foil substrate of about 7 μm in turn using magnetron sputtering and then deuterating under the deuterium atmosphere. The areal density of metal element in each layer of film was measured with RBS analysis by using a 4.0 MeV 4He ion beam, while the areal density of the deuterium absorbed in the Ti film was measured with ERD analysis by using a 6.0 MeV 16O ion beam. The results show that the cross-sections of p-D scattering under this experimental circumstance were much enhanced over the Rutherford cross-section value. It was found that the enhancement increases linearly as the energy of the incident beam increases. The total uncertainty in the measurements was less than 7.5%.  相似文献   

6.
As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo (“U8Mo”) was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes’ principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.  相似文献   

7.
Commercial O-face (0 0 0 1) ZnO single crystals were implanted with 200 keV Ar ions. The ion fluences applied cover a wide range from 5 × 1011 to 7 × 1016 cm−2. The implantation and the subsequent damage analysis by Rutherford backscattering spectrometry (RBS) in channelling geometry were performed in a special target chamber at 15 K without changing the target temperature of the sample. To analyse the measured channelling spectra the computer code DICADA was used to calculate the relative concentration of displaced lattice atoms.Four stages of the damage evolution can be identified. At low ion fluences up to about 2 × 1013 cm−2 the defect concentration increases nearly linearly with rising fluence (stage I). There are strong indications that only point defects are produced, the absolute concentration of which is reasonably given by SRIM calculations using displacement energies of Ed(Zn) = 65 eV and Ed(O) = 50 eV. In a second stage the defect concentration remains almost constant at a value of about 0.02, which can be interpreted by a balance between production and recombination of point defects. For ion fluences around 5 × 1015 cm−2 a second significant increase of the defect concentration is observed (stage III). Within stage IV at fluences above 1016 cm−2 the defect concentration tends again to saturate at a level of about 0.5 which is well below amorphisation. Within stages III and IV the damage formation is strongly governed by the implanted ions and it is appropriate to conclude that the damage consists of a mixture of point defects and dislocation loops.  相似文献   

8.
A comparison between the laser ablation of a palladium target in vacuum, by using 1064 nm and 532 nm Nd:YAG laser wavelengths, with an intensity of about 109 W/cm2, is reported. Nanosecond pulsed ablation produces high non-isotropic emission of neutrals and ions. For both wavelengths, mass quadrupole spectrometry and time-of-flight measurements allow estimation of the atomic and ionic species emitted from the plasma and of their energy distributions.Ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Surface profiles of the ablated craters permitted to study the ablation threshold and yields of palladium in vacuum vs. the laser fluence. The plasma temperature and density was evaluated by the experimental data. A special regard is given to the ion acceleration process occurring inside the plasma, due to the high electrical field generated inside the plasma.  相似文献   

9.
We report the first investigation of the frequency dependent effect of 50 MeV Li3+ ion irradiation on the series resistance and interface state density determined from capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics in HfO2 based MOS capacitors prepared by rf-sputtering. The samples were irradiated by 50 MeV Li3+ ions at room temperature. The measured capacitance and conductance were corrected for series resistance. The series resistance was estimated at various frequencies from 1 KHz to 1 MHz before and after irradiation. It was observed that the series resistance decreases from 6344.5 to 322 Ω as a function of frequency before irradiation and 8954-134 Ω after irradiation. The interface state density Dit decreases from 1.12 × 1012 eV−1 cm−2 before irradiation to 3.67 × 1011 eV−1 cm−2 after ion irradiation and further decreases with increasing frequency.  相似文献   

10.
The effects of irradiation of a Nd-Fe-B permanent magnet by fast neutrons was investigated. The decrease in measured magnetic flux density at the center of the magnets were 0.6%, 6.9%, 25.2% and 47.3% after continuous irradiation of 1.1 kGy, 3.7 kGy, 5.6 kGy and 7.4 kGy, respectively. On the other hand, the decrease due to non-continuous irradiation, in which the magnet was first irradiated at 3.7 kGy, then irradiated again at 3.7 kGy nine months later, was 14% smaller than that of continuous irradiation, even for the same total dose. The temperature coefficient of the magnetization did not change with irradiation. Some radioactive materials, such as 147Nd, 151Pm, and 54Mn, were detected in the magnet after irradiation.  相似文献   

11.
In order to enhance the fusion reaction rate in inertial electrostatic confinement devices, it is necessary to increase the ion density with low cathode current and low background pressure. In order to accomplish the requirement, the authors suggest magnetic-assisted electrostatic confinement (MEC) scheme. The MEC relies on controlling the ion motion by applying an axial magnetic field to a system with cylindrical electrodes. In order to clarify the fundamental performances of the MEC device, particle-in-cell simulation was carried out. By reducing the background pressure, the ion confinement was improved resulting in the increase of the ion density. However, the ion density saturated due to space charge limitation. The estimated fusion reaction rate was about 5 × 106 1/s/m when the cathode voltage was −100 kV, the magnetic field was 200 mT, and the cathode current was 100 mA/m. The reaction rate, however, is expected to become higher since the ion density limitation is moderated by the electron which is not considered in the present analysis.  相似文献   

12.
In order to understand the properties of ion tracks and the microstructural evolution under accumulation of ion tracks in UO2, 100 MeV Zr10+ and 210 MeV Xe14+ ions irradiation examinations have been done at a tandem accelerator facility of JAEA-Tokai, and it has been observed the microstructure by means of a transmission electron microscope (TEM) and a scanning electron microscope (SEM) in CRIEPI.Comparison of the diameter of ion tracks between UO2 and CeO2 under irradiation with 100 MeV Zr10+ and 210 MeV Xe14+ ions at room temperature clarify that the sensitivity on high density electronic excitation of UO2 is much less than that of CeO2. By the cross-sectional observation of UO2 under irradiation with 210 MeV Xe14+ ions at 300 °C, elliptical changes of fabricated pores that exist till ∼6 μm depth and the formation of dislocations have been observed in the ion fluence over 5 × 1014 ions/cm2. The drastic changes of surface morphology and inner structure in UO2 indicate that the overlapping of ion tracks will cause the point defects, enhance the diffusion of point defects and dislocations, and form the sub-grains at relatively low temperature.  相似文献   

13.
Unalloyed molybdenum and oxide dispersion strengthened (ODS) molybdenum were irradiated at 300 °C and 600 °C in HFIR to neutron fluences of 0.2, 2.1, and 24.3 × 1024 n/m2 (E > 0.1 MeV). The size and number density of voids and loops as well as the measured irradiation hardening and electrical resistivity were found to increase sub-linearly with fluence. This supports the idea that the formation of the extended defects that produce irradiation hardening in molybdenum is the result of a nucleation and growth process rather than the formation of sessile defects directly from the displacement damage cascades. This conclusion is further supported by molecular dynamics (MD) simulations of cascade damage. The unalloyed molybdenum had a low impurity interstitial content with less irradiation hardening and lower change in electrical resistivity than is observed for ODS Mo. This result suggests that high-purity can result in slightly improved resistance to irradiation embrittlement in molybdenum at low fluences.  相似文献   

14.
Diffusion of iodine in 6H-SiC and polycrystalline CVD-SiC was investigated using Rutherford backscattering spectroscopy and electron microscopy. A fluence of 1 × 1016 cm−2 of 127I+ was implanted with an energy of 360 keV at room temperature, producing an amorphous surface layer of approximately 220 nm thickness. The implantation profile reached an atomic density of approximately 1.3% at the projected range of about 95 nm. Broadening of the implantation profile and iodine loss through the front surface during isochronal and isothermal vacuum annealing was determined. At a temperature of 1100 °C no iodine loss was observed after 120 h and a diffusion coefficient of less than 10−21 m2 s−1 was extracted from the analysis of profile widths. Relatively strong broadening occurred after 60 h annealing at 1200 °C with the iodine profile extending beyond 300 nm into the bulk, accompanied by a surprisingly modest iodine loss through the surface. Electron microscopic studies reveal a drastic restructuring of the surface region at this temperature, indicating possible chemical reactions between iodine and silicon carbide.  相似文献   

15.
We have studied the formation of InAs precipitates with dimensions of several nanometers in silicon by means of As (245 keV, 5 × 1016 cm−2) and In (350 keV, 4.5 × 1016 cm−2) implantation at 500 °C and subsequent annealing at 900 °C for 45 min. RBS, SIMS, TEM/TED, RS and PL techniques were used to characterize the implanted layers. The surface density of the precipitates has been found to be about 1.2 × 1011 cm−2. Most of the crystallites are from 3 nm to 6 nm large. A band at 1.3 μm has been registered in the low-temperature PL spectra of (As + In) implanted and annealed silicon crystals. The PL band position follows the quantum confinement model for InAs.  相似文献   

16.
Effects of 150 MeV Ni11+ swift heavy ion (SHI) irradiation on copper ferrite nanoparticles have been studied at the fluences of 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 and 5 × 1014 ions/cm2. The XRD pattern shows the irradiation fluence dependant preferential orientation. Scanning electron microscope analysis displays fine blocks of material for pristine while partial agglomeration on irradiation. Notably, a large number of holes are present at the fluence of 5 × 1014 ions/cm2. The magnetization measurements performed in these samples exposes that the coercivity and remanence magnetization value increases due to the magnetocrystalline anisotropy up to the fluence of 1 × 1013 ions/cm2. At 1 × 1014 ions/cm2 fluence, the induced thermal energy overcomes the magnetocrystalline anisotropy constant and causes a decrease in coercivity and remanence values. The saturation magnetization decreases up to the fluence of 1 × 1013 ions/cm2 and then it increases for further irradiation. The change of crystalline orientation observed from XRD, the creation of holes from SEM and the change in magnetic properties are discussed on the basis of electro-phonon coupling and it invokes the thermal spike theory.  相似文献   

17.
The enhancement and optimization of H extraction through argon and magnesium seeding of hydrogen discharges in a magnetized sheet plasma source are reported. The paper first presents the modification of the production chamber into a hexapole multicusp configuration resulting in decreased power requirements, improved plasma confinement and longer filament lifetime. By this, a wider choice of discharge currents for sustained quiescent plasmas is made possible. Second, the method of adding argon to the hydrogen plasma similar to the scheme in Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689] was performed to find the optimum conditions for H formation and extraction. Using an E × B probe, H yields were investigated at varied argon-hydrogen admixtures, different discharge currents and spatial points relative to the core plasma. The optimum H current density extracted at 3.0 cm from the plasma core using 3.0 A plasma current with 10% argon seeding increased by a factor of 2.42 (0.63 A/m2) compared to the measurement of Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689]. Third, the argon-hydrogen plasma at the extraction chamber is seeded with magnesium. Mg disk with an effective area of 22 cm2 is placed at the extraction region’s anode biased 175 V with respect to the cathode. With Mg seeding, the optimum H current density at the same site and discharge conditions increased by 4.9 times (3.09 A/m2). The enhancement effects were analyzed vis-à-vis information gathered from the usual Langmuir probe (electron temperature and density), electron energy distribution function (EEDF) and the ensuing dissociative attachment (DA) reaction rates at different spatial points for various plasma discharges and gas ratios. Investigations on the changes in the effective electron temperature and electron density indicate that the enhancement is due to increased density of low-energy electrons in the volume, conducive for DA reactions. With Mg, the density of electrons with electron temperature of about 3 eV increased 3 orders of magnitude from 2.76 × 1012 m−3 to 2.90 × 1015 m−3.  相似文献   

18.
To drive plasma current non-inductively, a lower hybrid current drive (LHCD) system has been designed, fabricated and successfully installed on ADITYA tokamak. The system is designed to launch 120 kW of RF power, at a frequency of 3.7 GHz. The system mainly consists of a high power CW klystron source, a long waveguide transmission line of about 100 m length, a UHV compatible modular waveguide line of about 2.65 m, and a conventional grill type antenna. Independent phase shifters, one each in the eight lines, are used to adjust the antenna phasing and also provides the flexibility to launch a composite spectrum. The antenna is designed to launch lower hybrid waves (LHW) with parallel refractive index (N||), in the range, 1 < N|| < 4.5, by appropriately phasing the antenna. Antenna is positioned in the shadow of the poloidal limiter and is provided with 100 mm radial movement to achieve optimum coupling conditions.The complete system development includes design, fabrication and testing of number of waveguide components, modular waveguide lines and their integration. Different cost effective fabrication techniques are adopted to achieve good RF performance. Special attention is paid on the flanged joint seals in the long transmission line to minimize the RF losses. The entire LHCD system is calibrated, especially, in terms of phase, insertion loss and return loss measurements.After the successful integration of the system on ADITYA tokamak, some initial experiments have been carried out to assess the system commissioning and its performance. The experiments were done with a plasma (hydrogen) density of 2-5 × 1012 cm−3 at a toroidal magnetic field of 0.8 T with 10-25 kA of plasma current. Initial results indicate that, good coupling is achieved in the presence of proper edge density. Measurements obtained from second harmonic electron cyclotron emission (ECE) and hard X-ray diagnostics suggest generation of suprathermal electrons in the presence of LH pulse. Plasma current pulse elongation with LH power is observed but needs further investigation to derive conclusions.This paper presents the design, fabrication, testing and integration of the waveguide lines, waveguide components and UHV compatible modular transmission lines of the LHCD system on ADITYA tokamak and discusses some of the initial results.  相似文献   

19.
The radial temperature distribution of plutonium and uranium mixed oxide powder loaded into a cylindrical vessel was measured in air and argon gas, and the effective thermal conductivity was calculated from the measured temperature distribution and the decay heat. The effective thermal conductivities were small values of 0.061-0.13 W m-1 K-1 at about 318 K, and changed significantly with O/M, bulk density and atmospheric gas. The results in this work were analyzed by the model of Hamilton and Crosser and a new model for the effective thermal conductivity of the powder was derived as functions of powder properties and thermal conductivity of atmospheric gas.  相似文献   

20.
Au nanoislet targets ( 2-60 nm) were bombarded by 200 keV polyatomic ions (40 keV/atom), which deposit their energy mainly in the nuclear stopping mode: ∑(dE/dx)n = 30 keV/nm and ∑(dE/dx)e = 2 keV/nm. The matter desorbed in the form of nanoclusters was registered by TEM. The total transfer of matter was determined by neutron-activation analysis. The total yield of the ejected gold reached high values of up to 2.6 × 104 atoms per Au5 ion. The major part (2 × 104 atoms per ion Au5) of the emission is in the form of nanoclusters. The results are compared with the data of similar experiments with 1 MeV Au5 (200 keV/atom) and other projectiles. The analysis of the experimental data and the comparison to molecular-dynamics simulation results of the desorption process show that the desorption of Au nanoislets is induced by their melting, build-up of pressure and thermal expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号