首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV.Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation.Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the “Master curve” approach. Moreover, J-R dependencies were determined and analyzed.The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given.Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.  相似文献   

2.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

3.
The leak before break analysis of SS 316L(N) components of the prototype fast breeder reactor requires the elastic plastic fracture toughness parameter J for 0.2 mm crack extension, J0.2, especially for the welds, at the operating temperatures. The J-R curves for the welds produced using the consumable developed by Indira Gandhi Centre for Atomic Research, were determined in the as-welded condition as well as after thermal ageing (923 K/4200 h) conditions at 298 K and 643 K, using unloading compliance method for 298 K and normalization method for 643 K. The aged material exhibited pop-in crack extensions of magnitudes that, according to ASTM E1820 standard, could be ignored for multi-specimen data analysis for determining J0.2. Therefore, for this condition, Jnom-Δa curves were established using the multiple specimen method and also single specimen normalization method; for the latter, a modification earlier developed by the authors for accounting for small pop-in crack extensions was used. The value of J0.2 from both methods showed excellent reproducibility. Ageing is seen to reduce the toughness of this material considerably at both the testing temperatures.  相似文献   

4.
The effect of thermal aging on mechanical properties and fracture toughness was investigated on pressure vessel steel of light water reactors. Submerged are welded plates of ASME SA508 C1.3 steel were isothermally aged at 350°C, 400°C and 450°C for up to 10,000 hrs. Tensile, Charpy impact and fracture toughness testings were conducted on the base metal and the weld heat affected zone (HAZ) material to evaluate whether thermal aging induced by the plant operation is critical for the integrity of the pressure vessel or not. Tensile properties of the base metal was not changed by thermal aging as far as the thermal aging conditions were concerned. Relatively distinct degradation was observed in fracture toughness JIC and J-resistance properties of both the base metal and the weld HAZ material, while only slight changes were observed in Charpy impact properties for both of them. However, it was concluded that the effect of thermal aging estimated by 40–80 years of plant operation on fracture toughness of both materials is small.  相似文献   

5.
Fracture toughness tests were performed in the transition region for ASTM A508 Class 3 steel using about 160 specimens. The KJ-values which are converted from Jc of the smaller specimens indicated a wide scatter ranging from below the KIc-value to much higher toughness. The fast brittle fracture behavior in the transition regime can be divided into two regions: (1) the region where fracture occurs on a blunting line (Region I) and (2) the region where fracture occurs on an R-curve (Region II). The scatter of the KJ-values in each region is caused by the amount of crack extension contained in the specimens. The methods to obtain the fracture toughness equivalent to the KIc from the KJ values were also presented.In the upper shelf region, the ductile fracture behavior of A508 Class 3 base metal and weldments was investigated. The 25% side grooved specimen was recommended for measuring the resistance against ductile crack growth. The weld heat affected zone (HAZ) has comparatively higher tearing modulus, whereas the weld metal shows the lowest one.  相似文献   

6.
In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr–2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial–circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30–300 °C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (JQ, JMax and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (JQ) and crack propagation (JMax, and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value.  相似文献   

7.
Tensile and fracture toughness properties of a precipitation-hardened CuCrZr alloy were investigated in two heat treatment conditions: solutionized, water quenched and aged (CuCrZr SAA), and hot isostatic pressed, solutionized, slow-cooled and aged (CuCrZr SCA). The second heat treatment simulated the manufacturing cycle for large components, and is directly relevant for the ITER divertor components. Specimens were neutron irradiated at ∼80 °C to two fluences, 2 × 1024 and 2 × 1025 n/m2 (E > 0.1 MeV), corresponding to displacement doses of 0.15 and 1.5 displacements per atom (dpa). Tensile and fracture toughness tests were carried out at room temperature. Significant irradiation hardening and plastic instability at yield occurred in both heat treatment conditions with a saturation dose of ∼0.1 dpa. Neutron irradiation slightly reduced fracture toughness in CuCrZr SAA and CuCrZr SCA. The fracture toughness of CuCrZr remained high up to 1.5 dpa (J> 200 kJ/m2) for both heat treatment conditions.  相似文献   

8.
Irradiations to 1.5 dpa at 300-750 °C were conducted to investigate the changes in mechanical properties of an advanced nanocluster strengthened ferritic alloy, designated 14YWT, and an oxide dispersion strengthened ferritic alloy ODS-EUROFER. Two non-dispersion strengthened variants, 14WT and EUROFER 97, were also irradiated and tested. Tensile results show 14YWT has very high tensile strengths and experienced some radiation-induced hardening, with an increase in room temperature yield strength of 125 MPa after irradiation, while results for ODS-EUROFER show a 275 MPa increase following irradiation. Master curve fracture toughness analysis show 14YWT has a cryogenic To reference temperatures before and after irradiation of about −188 and −176 °C, respectively, and upper-shelf KJIc values between 175 and 225 MPa√m. The favorable fracture toughness properties and resistance to radiation-induced changes in mechanical properties observed for 14YWT are attributed to a fine grain structure and high number density of Y-Ti-O nanoclusters.  相似文献   

9.
Hydrogen embrittlement is one of the major degradation mechanisms for high burnup fuel cladding during reactor service and spent fuel dry storage, which is related to the hydrogen concentration, morphology and orientation of zirconium hydrides. In this work, the J-integral values for X-specimens with different hydride orientations are measured to evaluate the fracture toughness of Zircaloy-4 (Zry-4) cladding. The toughness values for Zry-4 cladding with various percentages of radial hydrides are much smaller than those with circumferential hydrides only in the same hydrogen content level at 25 °C. The fractograghic features reveal that the crack path is influenced by the orientation of zirconium hydride. Moreover, the fracture toughness measurements for X-specimens at 300 °C are not sensitive to a variation in hydride orientation but to hydrogen concentration.  相似文献   

10.
A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 × 1023 m−2 (E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 × 1023 m−2 (E > 0.5 MeV). High number densities of ∼2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the ΔT41 J ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiation anneal of 2 h at 450 °C, but had dissolved into the matrix after 24 h at 450 °C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.  相似文献   

11.
The microstructure of a radiation-sensitive KS-01 test weld has been characterized by atom probe tomography. The levels of copper, manganese, nickel and chromium in this weld were amongst the highest of all the steels used in Western reactor pressure vessels. After neutron irradiation to a fluence of 0.8 × 1023 n m−2 (E>1 MeV) at a temperature of 288 °C, this weld exhibited a large Charpy T41J shift of 169 K, a large shift of the fracture toughness transition temperature of 160 K, a decrease in upper shelf energy from 118 to ∼78 J, and an increase in the yield strength from 600 to 826 MPa. However, the mechanical properties data conformed to the master curve. Atom probe tomography revealed a high number density (∼3 × 1024 m−3) of Cu-, Mn-, Ni-, Si- and P-enriched precipitates and a lower number density (∼1  × 1023 m−3) of P clusters.  相似文献   

12.
Small punch test (SPT) is a miniature sample test technique which can evaluate in-service material properties with an almost non-destructive method. In this paper, the 2.25Cr1Mo steel samples serviced for 10 years in hydrogenation reactor (with temper embrittlement), 1.25Cr0.5Mo supper-pressure vapor pipe serviced for 14 years at 520 °C and several other low alloy steels have been studied by JIC fracture toughness and SPT. The linear relationship between the small punch (SP) equivalent fracture strain and the fracture toughness of JIC was created. The correlations applied to the experimental data indicated advantages of using SPT for the determining fracture toughness of in-serviced low alloy steels. Additionally, size affects the fracture pattern. Small punch samples of small size show dimple fractures whereas large fracture toughness samples show quasi-cleavage fractures.  相似文献   

13.
The 12% Cr steels are frequently used in German power plants for tubings, pipes, rotors, and blades. The maximum operating temperature is limited by their creep strength properties to about 550°C. There are applications at even higher temperatures. Sufficient materials toughness is required for the base metal and weld metal to withstand sudden load changes. This is of special interest for use in nuclear power plants. Under operating conditions at elevated temperatures microstructural changes occur which greatly influence the toughness properties of both base metal and weld metal. This paper presents the results of ageing treatments at 550°C, carried out with a 12% Cr steel (DIN X 20 CrMoV 12 1) specifically optimized for toughness. The decrease in toughness is already evident at ageing times as low as 1000 h for conventional and optimized material. This drop in toughness is tentatively explained by differences in grain sizes and carbide content (M23C6 carbides). Detailed investigations indicate that additional carbide precipitation may significantly contribute to the decrease in toughness.  相似文献   

14.
The effect of temperature on ductile fracture toughness of three narrow gap SAW welds and one MMAW weld (SA 508 Cl.3 base metal) was investigated using 25 mm thick CT specimens. Chemical analyses, tensile and Charpy V tests were also performed. Two methods of toughness characterization (partial unloadings or interrupted tests) were used at 20–43°C and service temperature (293°C). Values of J at initiation, and after a moderate propagation were considered and compared. At a given temperature, properties of the four welds were fairly similar. A conservative estimate of the toughness reduction factor, associated with a temperature increase from 43°C to 293°C, is J293 ? J431.6. Fracture surfaces were examined, showing a pattern of patches with dimples separated by areas of smoother surfaces. This fracture surface appearance can be related to the weld microstructure. Two models were tried for predicting the change of fracture toughness with temperature through the effect of this latter parameter on tensile properties. The characteristic distance model of ductile fracture provides a satisfactory estimate of the temperature effect on toughness.  相似文献   

15.
Changes in the fine structure and mechanical properties of the base metal (BM) and weld metal (WM) of VVER-1000 pressure vessels during accumulation of neutron dose in the range of fluences ∼(3.2-15) × 1023 m−2 (E > 0.5 MeV) at 290 °C are studied using methods of transmission electron microscopy, fractographic analysis, and Auger electron spectroscopy. A correlation was found between the changes of mechanical properties and the micro- and nano-structures of the studied steels. Accumulation of neutron dose considerably raises the strength characteristics and transition temperature of VVER-1000 pressure vessel steels. The rate of changes in the mechanical properties of the weld metal is significantly higher than that of the base metal. The slower growth of strength characteristics and transition temperature shift of the base metal under irradiation as compared with the weld metal is due to the slower growth of the density of radiation defects and radiation-induced precipitates. The level of intergranular embrittlement under irradiation in the weld metal is not higher then in the base metal in spite of the higher content of nickel.  相似文献   

16.
Quasistatic fracture behaviour of two heats of modified 9Cr–1Mo steel for steam generator applications have been assessed at 298, 653 and 823 K. JR curves were established and the elastic–plastic fracture toughness values at 0.2 mm crack extension (J0.2) were determined. The fracture mechanisms were entirely different for the two steels at 298 K, with brittle fracture controlled by cleavage crack initiation in one and ductile fracture in the other by void nucleation and growth. At 653 and 823 K, fracture in both materials was by ductile crack growth. The difference in behaviour between the two steels at 298 K was attributed to the differences in microstructure, distribution and density of inclusions as well as phosphorous contents.  相似文献   

17.
Two quantitative relations for the calculation of the fracture toughness of ductile materials available in the literature in mathematically closed form — the relation of Stroppe relating the critical value Jc of the J-integral to microstructural data as well as data of tensile tests and the relation of Hahn and Rosenfield relating fracture toughness and data of tensile tests — are applied to three conditions of different toughness of the 12% Cr-steel X 20 CrMoV 12 1.The microstructural parameters necessary for the calculation of the J-integral at crack initiation such as type, size, density and arrangement of nonmetallic inclusions as well as precipitates were determined for the three material conditions, X 20 CrMoV 12 1 optimized (low sulphur content), X 20 CrMoV 12 1 conventional (higher sulphur content) and the aged similar weld metal. The tensile tests and J—R-tests were performed at 150°C, where the energy absorbed corresponds to the upper shelf.Comparing the Ji-values calculated according to the equation of Stroppe with the Ji-values experimentally determined it is shown that the calculated values fall into the scatterband of the experimentally determined ones, showing a good agreement of calculated with the measured values for the three material conditions. In the case of the optimized X 20 CrMoV 12 1 the value of Ji, calculated according to the relation of Hahn and Rosenfield, corresponds to the measured one. However in the case of the conventional X 20 CrMoV 12 1 and the similar weld metal no more correspondence is found.  相似文献   

18.
Influence of hydrogen content on the impact toughness of Zr-2.5% Nb alloy was examined by carrying out instrumented drop weight tests in the temperature range of 25-250 °C using curved Charpy specimens fabricated from unirradiated pressure tubes of Indian Pressurized Heavy Water Reactor (IPHWR). Hydrogen content of the samples was between 10 and 170 ppm by weight (wppm). Sharp ductile-to-brittle-transition behaviour was demonstrated by hydrided materials. The temperature for the onset of transition increased with the increase in the hydrogen content of the specimens. The fracture surfaces of unhydrided specimen exhibited ductile fracture caused by micro void coalescence and tear ridges at lower temperatures and by fibrous fracture at intermediate and at higher temperatures. Except for the samples tested at the upper shelf energy levels, the fracture surfaces of all hydrided samples were suggestive of hydride assisted failure. In most cases the transverse cracks observed in the fracture path matched well with the hydride precipitate distribution and orientation.  相似文献   

19.
This paper deals with an investigation of mechanical and fracture toughness characteristics of welded joint materials used in Ignalina Nuclear Power Plant (NPP) reactor main circulating circuit (MCC) and steam pipelines. Basic metal of MCC group distributing header (GDH) steel 08Ch18N10T (Du-300), its weld metal welded by manual and automatic arc method using the wire SV-04Ch19N11M3 and electrodes EA-100/10U or EA-100/10T, this joint heat-affected zone metal and base metal of the main steam system—steel 16GS (DU-630) and its weld metal welded by manual arc method using the wire SV-08GS2 and electrodes UONI-13/55 were tested.Mechanical properties of welded joints materials—proportional limit (σpl), yield (σy) and ultimate (σu) strength, fracture stress (σf) and ductility (Z) (percent reduction of area) of the specimens were determined. Investigation of relative critical stress intensity factor for fixed thickness of the specimen and critical J-integral, JIC, was performed.The probabilistic investigation of influence of the mechanical properties (σpl, σy, σu) onto fracture toughness characteristics and JIC for tested materials by using linear regression model with three independent variables was performed.Research enabled to conclude that proposed multivariable regression model with 80% probability (confidence coefficient α = 0.05) has explained reasonably well the dependence of with σpl, σy, σu and it has shown the non-acceptability of probabilistic evaluation of the model with respect to JIC.  相似文献   

20.
The modifications of the mechanical properties of related-fluorite oxides (cubic zirconia [c-ZrO2] and pyrochlores [Gd2(Ti1−xZrx)2O7 with x = 0.5 and x = 1]) induced by swift heavy ion irradiation are investigated. Polycrystalline pellets of both materials were irradiated at room temperature with 940 MeV Pb or 870 MeV Xe ions at the GANIL accelerator in Caen at fluences ranging from 2 × 1011 to 1013 cm−2. Residual macroscopic stresses induced by irradiation were determined using X-ray diffraction and the sin2ψ method. The microhardness and the fracture toughness of irradiated samples were studied by Vickers micro-indentation. Amorphization occurs in Gd2TiZrO7 and not in Gd2Zr2O7 and c-ZrO2. The mechanical behavior of materials is found to be closely related to the residual stresses induced in the surface layer by irradiation. Compressive stresses are generated in c-ZrO2 and Gd2TiZrO7 (leading to an increase of fracture toughness), whereas tensile stresses (inducing a large decrease of fracture toughness) are observed in Gd2Zr2O7 due to the lattice contraction related to a pyrochlore fluorite→transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号