首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
提出一种分区广义变分和最小二乘加权残值区域分解法来分析圆锥壳-圆柱壳-圆锥壳组合结构的自由振动。首先将组合结构分解为圆柱壳、圆锥壳子结构,为获取组合壳体的高阶振动特性,进一步将圆柱壳、圆锥壳子结构分解为圆柱壳段和圆锥壳段。采用分区广义变分和最小二乘加权残值法将各壳段分区界面上的位移和转角协调方程引入到组合壳体的势能泛函中,使组合壳体的振动分析问题,归结为在满足分区界面位移和转角协调条件下的无约束泛函变分问题。圆柱壳段及圆锥壳段位移变量的周向和轴向(或母线方向)分量分别以Fourier级数和Chebyshev多项式展开。将区域分解法计算出的组合壳体振动频率与有限元软件ANSYS结果进行对比发现,两者非常吻合,验证了区域分解方法的收敛性和计算精度。  相似文献   

2.
提出了一种区域分解法来分析不同边界条件下圆锥壳-圆柱壳-圆锥壳组合结构的自由振动和强迫振动特性。首先将组合壳体的位移边界与固定边界分开,将其分解为圆柱壳、圆锥壳子结构;为能获取组合壳体的高阶振动特性,进一步将圆柱壳、圆锥壳子结构分解为自由的圆柱壳段和圆锥壳段。采用分区广义变分和最小二乘加权残值法将各壳段分区界面上的位移和转角协调方程引入到组合壳体的势能泛函中,使组合壳体的振动分析问题,归结为在满足分区界面位移和转角协调条件下的无约束泛函变分问题。圆柱壳段和圆锥壳段位移变量的周向和轴向分量分别采用Fourier级数和Chebyshev多项式展开。算例表明:区域分解法计算出的不同边界条件下组合壳体自由振动和强迫振动结果与有限元软件ANSYS结果非常吻合;该方法具有高效率、高精度和收敛性好等优点。  相似文献   

3.
4.
胡浩  李正良  于伟 《振动与冲击》2016,35(7):209-213
采用子结构导纳法研究了简支边界条件下带有多根弹簧-集中质量-圆柱壳耦合结构的自由振动。根据已有结果,通过求解多根弹簧等效刚度的推导思路,采用柔度法得到各子结构矩阵元素的柔度系数,进而求得集中质量带有多根弹簧的圆柱壳耦合结构自振频率及模态理论公式,并与已有文献结果作对比,证明了本文理论推导的正确性。应用本文理论方法进一步求解了集中质量带有三根弹簧圆柱壳耦合结构的自振频率及振型,并与建立的ANSYS有限元模型分析结果作对比,二者结果误差很小,可以忽略,再次验证本文理论的合理性及正确性。  相似文献   

5.
提出一种半解析法来分析圆柱壳结构自由振动特性。将圆柱壳壳结构在轴向方向分解为若干壳段,用沿轴向的Jacobi多项式和沿周向的Fourie r级数来表示各个壳段的位移函数,并采用罚参数法对圆柱壳结构的边界条件和壳段间的连续性条件进行模拟;最后,基于Rayleigh-Ritz法求得圆柱壳结构的自由振动频率。研究表明,该方法具有较好的收敛性,与公开发表文献一致性较高,研究成果可为复杂边界条件下圆柱壳结构自由振动特性分析提供数据积累和方法依据。  相似文献   

6.
为了提高旋转圆柱壳结构的使用性能和工作效率,减轻其质量已成为有效方式之一,针对这一需求,旋转圆柱壳结构有设计为厚度沿轴向变化即变厚度的趋势。基于此,利用Chebyshev-Ritz方法,对厚度沿轴向有3种线性变化形式的变厚度旋转圆柱壳的自由振动进行研究。考虑科氏力与离心力的影响,基于Sanders壳理论,将圆柱壳的位移场近似展开为Chebyshev多项式与边界函数乘积的形式,计算变厚度旋转圆柱壳的动能与势能,再根据Ritz方法获得变厚度旋转圆柱壳的频率方程。在此基础上,将所得结果与已有文献中的结果进行比较,验证了建模方法的准确性,并对计算结果进行了收敛性研究。最后比较了不同厚度变化形式下旋转圆柱壳的自由振动,并讨论了转速、厚度变化参数、圆柱壳长径比等参数对变厚度旋转圆柱壳自由振动的影响。  相似文献   

7.
分析结构自由振动的传递矩阵精确形式   总被引:1,自引:3,他引:1  
向宇 《振动与冲击》1999,18(2):69-74,4
本文以微分方程和矩阵分析理论为基础,导出了求解结构自由振动传递矩阵法的精确工,无论是在计算效率和精度上都是对传递矩阵法的一个很好推广。文中运用这种封闭的精确形式求解了分段变厚圆柱壳的自由振动。  相似文献   

8.
给出了流体载荷作用下正交各向异性圆锥壳体的自由振动理论模型。通过波传播法和Galerkin法得到了流体载荷作用下截锥壳体自由振动的解。流体载荷作用下的锥壳被划分为好几段,并且每个小圆锥段被当作一个小圆柱段。通过确定每个小圆柱段的流体载荷,来确定锥壳的流体载荷。这样,作用在锥壳上的流体载荷逐段加载。流体载何以及没有流体载荷作用的各向同性和正交各向异性圆锥壳的数值结果被计算出来阐述求解过程的有效性。  相似文献   

9.
使用能力法分析了两端简支复合材料纵横加筋圆柱壳的自由振动特性,从Love’s理论出发,分别计算壳体面板和纵横加筋结构的应变能和动能,在计算加筋结构应变能和动能时,将加筋结构的作用影响平均在整个壳体区域。然后代入Lagrange方程得到频率方程。通过比较,计算方法所得到的结果与文献比较吻合。采用平均法计算的结果比采用离散方法计算的结果偏小。还研究了壳体和加筋结构参数的变化对圆柱壳自由振动频率的影响。  相似文献   

10.
结合精细积分和传递矩阵方法,对变厚度圆柱壳的自由振动进行计算分析。该方法基于圆柱壳的基本微分方程,推导得到关于位移内力向量的一阶齐次偏微分方程,采用精细积分求得场传递矩阵,将其进行组装得到总传递方程,根据边界条件求解总传递方程中系数矩阵的行列式,计算得到变厚度圆柱壳的固有频率。将计算结果与有限元结果进行对比,验证方法的准确性及有效性。同时探究了边界条件、厚度变化形式、厚度变化系数及长径比对自由振动的影响规律。  相似文献   

11.
介绍精确动力刚度法分析中厚椭球壳自由振动具体实施方法,据环向波数不同将中厚椭球壳自由振动分解为一系列确定环向波数的一维振动;利用控制方程Hamilton形式建立动力刚度关系,用常微分方程求解器COLSYS求解控制方程获得单元动力刚度,用Wittrick-Williams算法求得该环向波数下椭球壳自振频率。数值算例给出中厚圆球壳及椭球壳不同边界条件的自振频率,验证动力刚度法高效、可靠、精确。  相似文献   

12.
正交异性扁薄球壳的非线性轴对称振动   总被引:4,自引:0,他引:4  
给出了一种研究圆柱正交异性扁薄球壳非线性轴对称自由振动的新的时间模态方法。首先,使用变分法导出了决定振动频率的一对代数-微分方程。然后,利用作者提出的改进的修正迭代法求得了渐进解。这使此种壳体的非线性振动的进展获得扩充研究。  相似文献   

13.
箱形正交异性矩形板结构为由四块板组成的结构。可以用一般解析解来求解这种结构的自由振动问题。这种解能用于求解板具有任意边界。对于每块板,其上边和下边具有边界条件,而在相连的两块板边则具有连续性条件。由四块板的全部条件方程式即可求解自然频率及其振型。为求解所有频率,可利用变形的对称和反对称条件,以矩形的和正方形的板结构为例进行了计算和分析。  相似文献   

14.
林鹏程  滕兆春 《振动与冲击》2020,39(12):249-256
基于Timoshenko梁理论研究两端夹紧、一端夹紧一端简支、两端简支三种不同边界条件下的轴向运动功能梯度材料(FGM)梁在热冲击载荷作用下的自由振动响应。利用Hamilton原理推导热冲击下轴向运动FGM梁的自由振动控制微分方程,并采用分离变量法求解一维热传导方程。通过微分求积法(DQM)在梁的长度方向进行离散,将原方程转化为四阶广义特征值问题,求解FGM梁自由振动的无量纲固有频率并进行特性分析。考虑了不同热冲击载荷,不同梯度指数和不同轴向运动无量纲速度对FGM梁自振频率的影响。结果表明:热冲击载荷越大,对降低FGM梁的固有频率的效果越明显;在轴向运动速度和热流输入不改变的情况下,逐渐增大材料梯度指数会使FGM梁的固有频率随之减小;FGM梁对热冲击短时间内有减缓作用,相对于均匀材料一阶失稳所需时间更长,受到热冲击的FGM梁在轴向运动时也更快达到失稳状态。  相似文献   

15.
Abstract

A mixed finite element scheme based on assumed local high‐order displacements is proposed for the free vibration of thick laminated plates. The effects of transverse shear deformation, transverse normal stress and rotary inertia are considered in the formulation. Cross‐ply laminates with simple supports and angle‐ply laminates with clamped edges are presented as examples. The three dimensional elasticity solutions of cross‐ply laminates with simple supports are used to assess the accuracy of the present scheme. The effects of the span‐to‐thickness, aspect and material anisotropy ratio on the fundamental natural frequency are investigated. The present results are compared with the results in the published literature, and agree closely with the 3‐D elasticity solutions.  相似文献   

16.
针对复杂开口形状的矩形薄板弯曲振动问题,提出一种基于Chebyshev-变分原理的建模方法,建立弹性边界条件下不同开口形状矩形薄板弯曲振动模型。采用边界约束因子模拟弹性边界条件,视开口部分为一种物理属性为零的特殊薄膜。将板的横向位移展开成双重Chebyshev多项式级数形式,建立薄板的拉格朗日泛函,利用变分法推导薄板的特征方程并求得固有频率及对应振型。开展开口薄板模态试验研究,对比理论计算结果与试验结果及有限元结果,验证该方法及模型的准确性和有效性。研究边界约束和开口形状对弯曲振动特性的影响。结果表明:开口形状对结构低阶固有频率影响较小,对高阶固有频率影响较大;开口形状的改变对结构奇数阶固有频率的影响大于对偶数阶固有频率的影响。  相似文献   

17.
In the second part of this study the approach developed in Part I has been used to analyse free vibration of three composite circular cylindrical shells with random scatter in the material properties. The cases considered are – specially orthotropic symmetric shells in axisymmetric and asymmetric oscillations, and antisymmetric cross ply laminated shell in axisymmetric oscillations. With known statistics of the material properties the mean and the variance of the natural frequencies have been obtained. Numerical results have been presented for graphite–epoxy composite shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号