首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
移动机器人的运动目标实时检测与跟踪   总被引:3,自引:0,他引:3  
运动目标检测及跟踪是机器视觉领域备受关注的前沿课题之一。该文针对移动机器人导航领域对检测与跟踪的实时性要求,基于Kalman滤波器实现了驱动单目摄像头的反馈控制系统。采用简单的三帧差背景剪除策略检测运动目标,合并运动估计和背景补偿以加快系统反应速度。系统误差保存在协方差阵中,以增益的形式参与控制。该文还详细分析了运动补偿对检测的影响及误差的变化趋势。实验表明,系统能够保持对运动目标稳定偏差的平滑跟踪,在480320的图像分辨率下控制速度达到20Hz(fps)。  相似文献   

2.
基于Camshift与Kalman的目标跟踪算法   总被引:1,自引:0,他引:1  
针对目标跟踪复杂的难点,提出了一种比较实用的跟踪方法。采用基于颜色概率分布的Camshift算法进行目标跟踪的同时,引入卡尔曼滤波,并给出模型参数。在目标发生遮挡时,使用卡尔曼滤波对目标运动状态进行估计。实验表明,算法能够对目标进行持续、稳定的跟踪。  相似文献   

3.
胡波 《计算机应用》2011,31(4):1047-1049
提出一种采用Bhattacharyya系数最大化并联合时空域信息的视频目标跟踪方法。时域通过卡尔曼滤波预测目标的运动信息,空域用Camshift算法精确匹配视频目标。由于运动目标机动性比较强,卡尔曼滤波预测的位置和真实位置存在较大的误差,容易导致下一步跟踪失败。采用基于Bhattacharyya系数的由粗到精的核匹配搜索方法,在卡尔曼滤波预测的位置基础上适当扩大搜索范围,通过Bhattacharyya系数最大化确定初始匹配窗口,再用Camshift算法精确匹配视频目标。实验证明该方法对机动快速运动目标具有很高的跟踪精度。  相似文献   

4.
针对Camshift算法在目标跟踪中容易出现错误识别的情况,对Camshift算法加入最优阈值处理;对目标容易跟丢的情况,运用Camshift算法和Kalman滤波结合的方法进行跟踪。基于OpenCV对比了双通道H,S分量加权情况下和单通道H分量情况下的反向投影图跟踪效果,验证了最优阈值下改进Camshift效果,实现了Camshift算法和Kalman滤波实时跟踪。实验结果证明:对Camshift加入优化阈值处理能明显地改进错误识别的情况,加入Kalman滤波器能有效避免目标丢失。  相似文献   

5.
《微型机与应用》2017,(12):39-41
在移动目标跟踪过程中,可能会受到种种干扰而导致目标不能有效地被跟踪。为了解决在跟踪运动目标过程中受到外界影响的缺陷,采用了一种Camshift和Kalman滤波结合的目标跟踪算法。算法能有效克服运动目标被遮挡或相似颜色运动目标干扰使目标跟踪丢失的缺陷。实验结果表明:本文提出的算法用于跟踪运动目标具有很好的鲁棒性。  相似文献   

6.
TLD(Tracking-Learning-Detection)跟踪最大的优点是对初始选择的目标进行不断的学习,来获取目标当前的外观特征信息。但其计算量大,当有相似目标出现、目标物被遮挡时,跟踪精确度低、效果差。Camshift算法是基于Meanshift算法形成的可连续自适应的一种算法。Camshift结合Kalman滤波可实现对目标位置的快速查找和对窗口大小的控制功能。将TLD跟踪方法的原始输出数据与改进算法的预测结果结合,再修正当前时刻的状态输出结果。对输出结果加权处理,得到目标的最终准确位置。改进算法既具有TLD算法原有的长期有效跟踪特点,又提高了对目标实时跟踪的准确性,同时对短时遮挡具有预测功能。  相似文献   

7.
视频序列中人体运动目标的检测与跟踪研究   总被引:3,自引:0,他引:3  
提出一种视频序列中人体运动目标的精确检测、提取以硬跟踪算法。该算法采用帧间差闽值法(简称TIFD)实现快速精确地检测和提取目标,使用扩展的Kalman滤波器预测运动目标下一时刻可能处于的区域,缩小了目标跟踪时的搜索范围。充分利用运行目标检测的结果,提高了目标的匹配效率及跟踪速度。同时给出了相应的实验结果,结果表明方法是比较实用的,能满足人体运动分析的基本要求。  相似文献   

8.
目标跟踪技术在机器人领域中占据非常重要的一部分,可应用于日常生活、军事工业等多个领域.该文采用改进的KCF算法,基于ROS(Robot Operating System)搭建目标跟踪移动机器人.该机器人主要由驱动执行系统、传感系统和控制系统组成.利用Kinect深度摄像头和hector_slam算法建立环境地图,再利用...  相似文献   

9.
研究基于开源机器人运行系统ROS(Robot Operating System)架构的移动机器人目标跟踪系统的设计与实现。考虑目标人检测的准确性和跟踪鲁棒性的需要,首先对跟踪目标进行特征提取,并利用深度信息实现基于最近点位置信息的目标跟踪。跟踪过程中通过欧氏聚类法去除噪声信息,在深度信息无法解决干扰物影响跟踪效果的情况下,使用基于颜色信息的Cam-Shift跟踪方法实现目标跟踪,提高了系统抗干扰能力。实验结果验证了该系统的可行性和稳定性。  相似文献   

10.
利用SONYEV-D31摄像机和自主研发的摄像机控制模块,构建了一套主动视觉子系统,并将该子系统应用于RIRA-Ⅱ型移动机器人上,实现了移动机器人运动目标自动跟踪功能。RIRA-Ⅱ移动机器人采用了由一组分布式行为模块和集中命令仲裁器组成的基于行为的分布式控制体系结构。各行为模块基于领域知识通过反应方式产生投票,由仲裁器产生动作指令,机器人完成相应的动作。在设置了障碍、窄通道以及模拟墙体的复杂环境下进行运动目标跟踪实验,实验表明运动目标跟踪系统运行可靠,具有较高的鲁棒性。  相似文献   

11.
为了能够快速和准确地跟踪运动目标,提出了一种改进的基于Camshift的粒子滤波算法。在粒子滤波框架下,首先对传统目标模型进行改进,提出一种新的融合目标颜色信息和运动信息的模型,以增强目标跟踪的稳健性和准确性;同时为了提高跟踪的效率,将一种改进的Camshift算法嵌入到粒子滤波中,用来重新分配随机粒子样本,使之向目标状态的最大后验概率密度方向移动。实验结果表明,与传统的粒子滤波算法或Camshift算法相比,该方法能有效处理目标快速运动或背景存在强干扰等情况,实现对目标快速和稳健的跟踪。  相似文献   

12.
针对采用固定跟踪窗的传统跟踪方法容易将云层边角等干扰信息纳入跟踪窗,从而影响目标稳定跟踪的问题,提出了一种自适应跟踪窗的算法。在检测到目标的前提下,通过Kalman滤波器动态地改变目标跟踪过程中跟踪窗的大小,以减少跟踪过程中云层等干扰信息对跟踪的影响,并减少算法需要处理的信息量。在真实红外跟踪平台上的实验表明,提出的算法在干扰抑制和运行速度方面都有一定程度的提高。  相似文献   

13.
一种复杂场景下的运动目标跟踪算法   总被引:1,自引:2,他引:1  
提出了一种基于跟踪窗口自适应和抗遮挡的目标跟踪算法。采用Mean Shift算法确定当前帧的目标位置,最优选取核函数带宽,使跟踪窗口能够根据目标尺寸大小作出自适应调整。利用Bhattacharyya系数作为遮挡的判断依据,当目标遮挡时引入卡尔曼滤波器估计目标的运动信息,进行后续状态预测。实验表明,该算法能有效跟踪复杂场景下的运动目标。  相似文献   

14.
基于粒子滤波的机动目标跟踪   总被引:1,自引:0,他引:1  
在单机动目标跟踪中,目标的机动情况是未知的,提出的算法用粒子滤波器求加速度的估计,由Kalman滤波得到加速度的重要性概率密度函数。仿真实验结果表明,该算法可较好地跟踪目标状态(包括加速度)的变化。  相似文献   

15.
在实际的目标跟踪场景中,普遍存在非高斯过程噪声和/或量测噪声,以及非高斯先验信息等情况,针对这一问题,提出一种新的解决非线性/非高斯系统滤波问题的非线性滤波算法,即高斯和求积分卡尔曼滤波(GSQKF)算法。仿真实验将新算法与标准的粒子滤波算法进行了比较,表明新算法是一种非常有效的非线性滤波算法。  相似文献   

16.
针对集中目标跟踪和分层目标跟踪中心节点通信瓶颈以及容错性能差的不足, 提出了一种分布式动态一致性非线性目标跟踪策略。目标状态初始化由网络节点采用加权最小二乘法完成。整个跟踪过程采用动态成簇策略, 分阶段选择并唤醒任务节点检测目标并执行分布式一致性扩展卡尔曼滤波策略完成目标的状态估计, 其余节点进入休眠状态从而能降低系统的能耗。从跟踪误差和能量两个方面, 与集中目标跟踪算法相比, 仿真结果表明所提算法与集中卡尔曼滤波相比, 跟踪精度相当, 适用于要求高可靠度的非线性跟踪。此外分布式的工作方式使得节点仅需与邻居交换数据并在局部完成状态估计, 消除集中式结构中心节点的瓶颈, 以保证部分传感器节点的损坏不会影响到全局任务的完成。  相似文献   

17.
多传感器信息融合的目标跟踪研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了提高红外与毫米波雷达双模制导系统的目标跟踪精度,提出了将UKF用于红外和毫米波雷达的数据处理,采用分布式融合结构,通过对两传感器的滤波协方差矩阵的相关估计,将滤波协方差矩阵和状态估计进行融合。该方法应用于红外与毫米波雷达双模制导系统的目标跟踪仿真,仿真结果表明:与单传感器系统相比,该方法提高了制导系统的目标跟踪精度。  相似文献   

18.
提出一种基于加性无迹卡尔曼滤波的雷达目标跟踪方法。雷达跟踪系统为离散非线性系统,传统的解决方法是使用扩展卡尔曼滤波。无迹卡尔曼滤波用少量采样点表示随机变量的分布,通过非线性系统传播,能以三阶精度获得非线性变换的均值和方差的估计。用无迹卡尔曼滤波进行雷达目标跟踪。通过Monte Carlo仿真,验证了该滤波算法比传统的扩展卡尔曼滤波具有更高的滤波精度。  相似文献   

19.
针对室内说话人实时定位跟踪不准确的问题,提出了一种基于TMS320DM6437硬件平台的音视频融合定位跟踪方法。该方法利用Kalman滤波器和Mean-shift算法搜寻说话人最优位置进行视频定位跟踪。同时,采用到达时间差的音频方法进行目标位置估计。由Kalman信息整合中心进行音视频融合,以提高视听系统定位跟踪的稳定性。实验结果表明,与单模态定位跟踪系统相比,该方法对320×240的图像可实现平均20frame/s的跟踪速度,能提高目标定位跟踪准确度17%,改进效果明显且稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号