首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为了开发小型化的实用激光甲烷检测系统,设计了基于STM32单片机和FPGA的系统方案。FPGA实现系统中正交矢量锁相放大器和激光器调制驱动信号的产生。STM32负责半导体激光器温度控制,气体体积分数计算,通信接口等功能。设计的激光甲烷检测系统对4种标准甲烷气体进行了实际测试,在10%量程范围内示值误差不超过±0.2%。此方案可以作为激光气体检测系统的通用平台,实现对其他气体的测量。  相似文献   

2.
曹榕 《传感技术学报》2020,33(2):232-237
基于可调谐二极管激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)技术的气体浓度测量系统通常以吸收光谱的归一化二次谐波信号反演气体浓度。然而以常用的数字锁相技术提取归一化二次谐波信号的方法消耗资源多、计算量大。为简化计算量,一种基于广义级数展开快速拟合的方法被提出,首先测量激光器的入射平均光强,结合光强调制系数计算线型函数及其平方项的傅里叶展开系数,即可拟合出归一化二次谐波信号。构建了CO2气体吸收光谱检测实验,实验测试及仿真计算结果表明采用本文方法拟合的结果与通过数字锁相技术实测的信号之间最大相对误差仅为2‰,计算消耗的时间却远小于后者,简化了系统资源,有利于TDLAS技术气体浓度测量系统的小型化、数字化。  相似文献   

3.
为了解决基于可调谐二极管激光光谱吸收(TDLAS)技术的乙炔气体浓度监测系统的小型化、实时现场监控难的问题,采用了带MMU的ARM9处理器S3C2410.实现了乙炔气体浓度数据采集和数据处理的实时现场监控系统的设计.系统中,采用了激光的波长调制和乙炔气体的光谱吸收特性.实验结果表明,整个监控系统不仅实现了小型化设计,而且实现了智能化和实时监控,非常适合现场监控,乙炔气体浓度的测量精度可以达到10-6量级.  相似文献   

4.
为了解决基于可调谐二极管激光光谱吸收(TDLAS)技术的乙炔气体浓度监测系统的小型化、实时现场监控难的问题,采用了带MMU的ARM9处理器S3C2410。实现了乙炔气体浓度数据采集和数据处理的实时现场监控系统的设计。系统中,采用了激光的波长调制和乙炔气体的光谱吸收特性。实验结果表明,整个监控系统不仅实现了小型化设计,而且实现了智能化和实时监控,非常适合现场监控,乙炔气体浓度的测量精度可以达到10^-6量级。  相似文献   

5.
基于FPGA的数字超声内窥镜接收系统设计   总被引:2,自引:1,他引:1  
根据数字超声成像的要求和超声信号的特点,设计了由高速采样电路和FPGA正交解调电路组成的数字超声内窥镜接收系统。采样电路由AD8138和AD9235实现,对放大后的超声回波信号直接进行模数转换;FPGA利用内部RAM、乘法器、IP核和宏模块构建数字正交解调电路,提取超声回波信号的幅度;获取的幅度信息经USB2.0接口电路送入计算机显示。对玻璃杯进行的静止扫描成像实验,验证了接收系统的小信号检测能力,可以检测到信噪比约为4dB的回波信号;对玻璃杯进行的旋转扫描成像实验,表明接收系统可用于数字超声内窥镜成像。  相似文献   

6.
数字正交下变频器DDC是数字接收机系统中的核心部件,其作用是将ADC数字化后输出的高速中频信号进行下变频、抽取降速和低通滤波,使之变为适合处理的基带信号。给出了DDC各模块在FPGA中高效实现的方法,并且利用嵌入式逻辑分析仪对系统加载板卡后的实时运行结果进行了测试分析。  相似文献   

7.
为了实现微弱光信号的快速高精度检测,设计了一种基于FPGA的三通道高精度光学检测仪.该仪表利用灵敏度极高的光电转换模块作为感光元件,将光强信号转换为数字脉冲信号,之后利用FPGA对脉冲信号进行高频计数,通过脉冲频率反映光的强弱.在FPGA内部构建了NIOS Ⅱ作为整个仪表的控制核心,并移植了μC/OS-Ⅱ操作系统,实现对键盘、液晶、步进电机等模块的控制功能.系统采用了三通道设计,可以同时测量三种不同待测试剂,且三通道间相互干扰小,一致性好,系统噪声低,大大提高了检测效率.在实际发光检测应用中,该仪表灵敏度高,线性度好,检测时间短,成为现场快速光学检测的有效工具.  相似文献   

8.
为有效提取测控系统输入信号的幅度和相位信息,设计了基于FPGA与Matlab的信号数字正交解调器;在Matlab/Simulink 环境中产生一路调幅信号,并在此环境下利用5个直接I型的4阶FIR滤波器节搭建了20阶FIR滤波器;利用FPGA查表法实现数控振荡器(NCO),并控制1路调幅信号与正交的正、余弦信号分别进行数字混频处理;对经FPGA数字混频处理后的两路倍频分量和基频分量信号进行滤波处理,经处理后的信号在FPGA的控制下进行相加处理;最后在硬件平台上进行了仿真测试实验,验证了该方案的正确性和可行性.  相似文献   

9.
无人机系统常采用脉冲宽度调制信号(PWM)控制舵机执行机构,在进行飞行控制系统闭环半物理仿真中,需要实时采集舵机控制信号作为无人机模型的控制输入,进而构成闭环仿真.提出并实现了一种以FPGA为核心的PWM信号转换器的设计,给出了PWM信号转换器各部分模块的详细设计,并用Verilog在FPGA中实现了其全部功能.在对FPGA设计的PWM信号转换器模块功能仿真和时序仿真正确后,下载到Altera开发板中进行验证.测试结果表明,利用FPGA设计的PWM信号转换器模块具有测量精度高、简单高效的特点,满足了实时仿真的要求.  相似文献   

10.
黄皓  刘靓 《自动化与仪表》2023,(12):95-98+109
在运载火箭综合试验过程中,为提高测量系统在综合试验中的数字量接口测试的通用化和自动化水平,该文设计一种基于PXI总线的外系统等效器发送数字量信号模拟源的方法,通过LabVIEW FPGA模块方式来模拟控制系统的加表、陀螺脉冲、计算机字,使用LabVIEW图形化编程方式在上位机在线下载和编译FPGA逻辑,从而实现数字量信号时序逻辑的软件自定义。该方法成功应用于某运载火箭型号测量系统综合试验,易于状态升级需求和移植到其他型号,具备较强的扩展性。  相似文献   

11.
针对战术导弹通用惯性导航系统应用需求设计了一种基于光纤陀螺与石英加速度计传感器的信号同步采集与实时处理硬件系统,完成了方案设计,对各子模块进行了功能划分与指标分配,采用 DSP+FPGA的嵌入式硬件平台架构,实现了三通道电流到频率脉冲的高精度模/数转换,陀螺仪、加速度计敏感的载体三维角运动、线运动测量信号的同步采集与实时处理功能,具有小型化、通用性强的特点,对样机实现的性能指标验证和测试结果符合设计要求。  相似文献   

12.
基于FPGA无线测控模块在测控系统中有限状态机的设计,通过主从机的工作状态和行为转移的描述,建立以有限状态机为核心模型的远程测控系统,并利用实际硬件模块实现了对温度、溶氧量等现场环境远程测控的真实验证.实际使用结果证实了测控系统中状态机模型的通用性和可靠性,对于基于FPGA的远程测控模块的验证设计具有很好的工程参考价值.  相似文献   

13.
针对谐振式陀螺输出频率差信号微弱的特点,设计了一种应用于谐振式光纤陀螺的数字化双相位的锁相放大器,用于检测谐振式光纤陀螺Sagnac效应引起的角速度信号.该锁相放大器无需对参考信号进行相位调整即可实现对待测信号的鉴幅功能,改善系统检测系统的信噪比,实现微弱信号检测.采用数字电路实现该锁相放大器,并将其集成到FPGA上,有利于陀螺小型化和集成化.  相似文献   

14.
针对基于可调谐二极管激光吸收光谱技术(TDLAS)的气体体积分数检测系统,介绍了TDLAS探测气体体积分数的原理;详细分析了测量误差的影响因素;研究了将所测得的吸收谱线扣除背景谱线,对采集到的二次谐波信号采用最小二乘波形拟合的信号处理方法。这种方法可以有效地抑制噪声干扰,提高探测灵敏度。  相似文献   

15.
研究并设计了一种基于"FPGA+DSP+ARM"架构的新型光电混合相关器。该系统采用DSP与FPGA完成目标图像的采集、预处理以及畸变不变处理,采用光学处理模块实现联合图像的傅立叶变换,得到联合功率频谱,最后,S3C2440完成对该频谱的采集、振幅调制滤波、傅立叶逆变换以及图像识别。大量的实验表明:该光电混合相关器实现了图像识别的智能化、实时化及小型化,具有较强的实用价值。  相似文献   

16.
为了适应外骨骼机器人的发展需求,设计了一款可以实现外骨骼控制的控制器,该控制器采用以PowerPC芯片为核心,FPGA芯片为辅的硬件设计,文中详细说明了各个模块的设计思想及外围接口电路的设计,由于PowerPC芯片较高的内部集成了多种功能,以及在平台中加入了以FPGA来集中控制各个接口,因此可以实现多个传感器接口信号采集和控制,并使用实时操作系统对各个传感器信号处理和控制。该控制器具有运算速度快,扩展方便,可靠性较高的特点。  相似文献   

17.
为了解决现有频率测量模式单一性,设计了一个具有多模式下工作的频率测量系统,通过手动和全自动实现频率测量.在手动模式测量中可以根据所需选择测量频率的模式,测周模式,多周期同步模式,全同步模式;全自动测量中,首先对待测信号粗测,根据粗测结果划分不同频率段,对不同频率段采用不同测频模式.FPGA作为核心的功能模块,其内部集成了脉冲计数模块和控制模块;NiosⅡ软核处理器作为系统整体控制模块,实现数据处理,并将数据在上位机实时显示出来.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号